OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20356–20367

Design of a compact mode and polarization converter in three-dimensional photonic crystals

Jian Wang and Minghao Qi  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20356-20367 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A mode and polarization converter is proposed and optimized for 3D photonic integrated circuits based on photonic crystals (PhCs). The device converts the index-guided TE mode of a W1 solid-core (SC) waveguide to the band-gap-guided TM mode of a W1 hollow-core (HC) waveguide in 3D PhCs, and vice versa. The conversion is achieved based on contra-directional mode coupling. For a 25μm-long device, simulations show that the power conversion efficiency is over 98% across a wavelength range of 16 nm centered at 1550 nm, whereas the reflection remains below –20dB. The polarization extinction ratio of the conversion is in principle infinitely high because both W1 waveguides operate in the single-mode regimes in this wavelength range.

© 2012 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(130.5296) Integrated optics : Photonic crystal waveguides
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Photonic Crystals

Original Manuscript: June 25, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 6, 2012
Published: August 21, 2012

Jian Wang and Minghao Qi, "Design of a compact mode and polarization converter in three-dimensional photonic crystals," Opt. Express 20, 20356-20367 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990). [CrossRef] [PubMed]
  2. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett.67(17), 2295–2298 (1991). [CrossRef] [PubMed]
  3. H. S. Sozuer and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt.41(2), 231–239 (1994). [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998). [CrossRef]
  5. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett.77(22), 3490–3492 (2000). [CrossRef]
  6. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004). [CrossRef] [PubMed]
  7. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature414(6861), 289–293 (2001). [CrossRef] [PubMed]
  8. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009). [CrossRef] [PubMed]
  9. L. Tang and T. Yoshie, “Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping,” Opt. Express17(3), 1346–1351 (2009). [CrossRef] [PubMed]
  10. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  11. M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64(7), 075313 (2001). [CrossRef]
  12. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001). [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  14. A. Chutinan and S. John, “Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2 Pt 2), 026605 (2005). [CrossRef] [PubMed]
  15. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B62(12), 8212–8222 (2000). [CrossRef]
  16. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  17. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys.79(10), 7483–7492 (1996). [CrossRef]
  18. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett.91(2), 023902 (2003). [CrossRef] [PubMed]
  19. A. Talneau, P. Lalanne, M. Agio, and C. M. Soukoulis, “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett.27(17), 1522–1524 (2002). [CrossRef] [PubMed]
  20. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B64(15), 155113 (2001). [CrossRef]
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  23. S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De la Rue, T. F. Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B63(11), 113311 (2001). [CrossRef]
  24. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdre, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express11(13), 1490–1496 (2003). [CrossRef] [PubMed]
  25. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6 Pt 2), 066608 (2002). [CrossRef] [PubMed]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  27. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005). [CrossRef] [PubMed]
  28. H. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol.23(1), 432–445 (2005). [CrossRef]
  29. Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B25(5), 747–753 (2008). [CrossRef]
  30. S. H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express17(14), 11267–11273 (2009). [CrossRef] [PubMed]
  31. M. V. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, and T. F. Krauss, “Compact polarization converter in InP-based material,” Opt. Express13(13), 5040–5045 (2005). [CrossRef] [PubMed]
  32. H. Zhang, S. Das, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012). [CrossRef]
  33. M. Qi, M. R. Watts, T. Barwicz, L. Socci, P. T. Rakich, E. I. Ippen, and H. I. Smith, “Fabrication of Two-Layer Microphotonic Structures without Planarization,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CWD5.
  34. J. Ouyang, J. Wang, Y. Xuan, and M. Qi, “Hollow-core high-Q micro-cavities in three-dimensional photonic crystals,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper JThE33.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited