OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20376–20386

Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles

Brice Rolly, Brian Stout, and Nicolas Bonod  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20376-20386 (2012)
http://dx.doi.org/10.1364/OE.20.020376


View Full Text Article

Enhanced HTML    Acrobat PDF (1700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dielectric particles supporting both magnetic and electric Mie resonances are shown to be able to either reflect or collect the light emitted by a single photon source. An analytical model accurately predicts the scattering behavior of a single dielectric particle electromagnetically coupled to the electric dipole transition moment of a quantum emitter. We derive near field extensions of the Kerker conditions in order to determine the conditions that strongly reduce scattering in either the forward or backward directions. This concept is then employed to design a lossless dielectric collector element whose directivity is boosted by the coherent scattering of both electric and magnetic dipoles.

© 2012 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(350.5610) Other areas of optics : Radiation
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Scattering

History
Original Manuscript: June 29, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 3, 2012
Published: August 21, 2012

Citation
Brice Rolly, Brian Stout, and Nicolas Bonod, "Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles," Opt. Express 20, 20376-20386 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Yda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007). [CrossRef]
  2. H. F. Hofman, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi-Uda antenna,” New J. Phys.9, 217 (2007). [CrossRef]
  3. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna.” Opt. Express16, 10858–10866 (2008). [CrossRef] [PubMed]
  4. A. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett.9, 4228–4233 (2009). [CrossRef] [PubMed]
  5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  6. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett.104, 026802 (2010). [CrossRef] [PubMed]
  7. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical antennas,” Nano Lett.9, 2343–2349 (2009). [CrossRef] [PubMed]
  8. N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B82, 115429 (2010). [CrossRef]
  9. R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006). [CrossRef]
  10. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express15, 14266–14274 (2007). [CrossRef] [PubMed]
  11. G. C. des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the near–field of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express16, 17654–17666 (2008). [CrossRef]
  12. B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B28, 1213–1223 (2011). [CrossRef]
  13. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B26, 1473– 1478 (2009). [CrossRef]
  14. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Goetzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011). [CrossRef]
  15. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano4, 3390–3396 (2010). [CrossRef] [PubMed]
  16. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic–plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano6, 951–960 (2012). [CrossRef]
  17. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B72, 193103 (2005). [CrossRef]
  18. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett.99, 107401 (2007). [CrossRef] [PubMed]
  19. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009). [CrossRef]
  20. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett.102, 133901 (2009). [CrossRef] [PubMed]
  21. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  22. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012). [CrossRef] [PubMed]
  23. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983). [CrossRef]
  24. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010). [CrossRef]
  25. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A28, 54–60 (2011). [CrossRef]
  26. R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. Gonzalez, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics5, 053512 (2011). [CrossRef]
  27. R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys.13, 123017 (2011). [CrossRef]
  28. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano6, 5489–5497 (2012). [CrossRef] [PubMed]
  29. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B85, 245432 (2012). [CrossRef]
  30. B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitter–particle distance on the directivity of optical antennas,” Opt. Lett.36, 3368–3370 (2011). [CrossRef] [PubMed]
  31. H. Wang, X. Li, A. Pyatenko, and N. Koshizaki, “Gallium phosphide spherical particles by pulsed laser irradiation in liquid,” Sci. Adv. Mater.4, 544–547 (2012). [CrossRef]
  32. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  33. B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B84, 125420 (2011). [CrossRef]
  34. M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett.11, 5060–5065 (2011). [CrossRef] [PubMed]
  35. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule driven nanoantennas assembled on DNA,” Nat. Commun.3, 962 (2012). [CrossRef] [PubMed]
  36. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  37. A. Krasnok, A. Miroshnichenko, P. Belov, and Y. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Lett.94, 593–598 (2011). [CrossRef]
  38. D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited