OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20407–20426

Optimal wavelength-space crossbar switches for supercomputer optical interconnects

Ioannis Roudas, B. Roe Hemenway, Richard R. Grzybowski, and Fotini Karinou  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20407-20426 (2012)
http://dx.doi.org/10.1364/OE.20.020407


View Full Text Article

Enhanced HTML    Acrobat PDF (2040 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a most economical design of the Optical Shared MemOry Supercomputer Interconnect System (OSMOSIS) all-optical, wavelength-space crossbar switch fabric. It is shown, by analysis and simulation, that the total number of on-off gates required for the proposed N × N switch fabric can scale asymptotically as N ln N if the number of input/output ports N can be factored into a product of small primes. This is of the same order of magnitude as Shannon’s lower bound for switch complexity, according to which the minimum number of two-state switches required for the construction of a N × N permutation switch is log2 (N!).

© 2012 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(200.6715) Optics in computing : Switching

ToC Category:
Optics in Computing

History
Original Manuscript: February 1, 2012
Revised Manuscript: April 9, 2012
Manuscript Accepted: April 22, 2012
Published: August 21, 2012

Citation
Ioannis Roudas, B. Roe Hemenway, Richard R. Grzybowski, and Fotini Karinou, "Optimal wavelength-space crossbar switches for supercomputer optical interconnects," Opt. Express 20, 20407-20426 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. The Top 500 Supercomputer Sites, http://www.top500.org .
  2. R. Hemenway, R. R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-switched interconnect for supercomputer applications,” J. Opt. Netw. 3(12), 900–913 (2004). [CrossRef]
  3. R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection networks: The OSMOSIS project,” in Proceedings of IEEE Lasers and Electro-Optics Society 17th Annual Meeting, Rio Grande, Puerto Rico, (2004), 563–564.
  4. R. Luijten, C. Minkenberg, R. Hemenway, M. Sauer, and R. Grzybowski, “Viable opto-electronic HPC interconnect fabrics,” in Proceedings of ACM/IEEE SC2005 Conference on High Performance Networking and Computing, Seattle, WA, USA, (2005).
  5. R. Luijten, C. Minkenberg, B. R. Hemenway, and R. R. Grzybowski, “Implementation challenges in the OSMOSIS optical HPC switch,” in Proceedings of IEEE Lasers and Electro-Optics Society 19th Annual Meeting, Montreal, CA, (2006), 623–624.
  6. M. Sauer, R. Hemenway, R. Grzybowski, D. Peters, J. Dickens, and R. Karfelt, “A scaleable optical interconnect for low-latency cell switching in high-performance computing systems,” Proc. SPIE 6124, 61240N, 61240N-12 (2006). [CrossRef]
  7. I. Roudas, B. R. Hemenway, and R. R. Grzybowski, “Optimization of a supercomputer optical interconnect architecture,” in Proceedings of IEEE Lasers and Electro-Optics Society 20th Annual Meeting, Orlando, FL, (2007), 741–742.
  8. R. P. Luijten and R. Grzybowski, “The OSMOSIS Optical Packet Switch for Supercomputers,” in Proceedings of IEEE/OSA Optical Fiber Communication Conference, San Diego, CA, (2009), pp. 1–3.
  9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed. (Cambridge University Press, 1992).
  10. M. Zirngibl, C. H. Joyner, and B. Glance, “Digitally tunable channel dropping filter/equalizer based on waveguide grating router and optical amplifier integration,” IEEE Photon. Technol. Lett. 6(4), 513–515 (1994). [CrossRef]
  11. L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks–performance evaluation and optimization,” Comput. Netw. 1, 82–92 (1977).
  12. O. Ishida, H. Takahashi, and Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating (AWG) multiplexers and optical switches,” J. Lightwave Technol. 15(2), 321–327 (1997). [CrossRef]
  13. A. Misawa, K. Sasayama, and Y. Yamada, “WDM knockout switch with multi-output-port wavelength channel selectors,” J. Lightwave Technol. 16(12), 2212–2219 (1998). [CrossRef]
  14. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM channel selector with novel configuration,” Electron. Lett. 38(7), 331–332 (2002). [CrossRef]
  15. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, and Y. Tohmori, “Monolithically integrated 64-channel WDM wavelength selective receiver,” Electron. Lett. 39(3), 312–314 (2003). [CrossRef]
  16. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett. 16(11), 2481–2483 (2004). [CrossRef]
  17. G. Arfken, Mathematical Methods for Physicists, 3d ed. (Academic Press, 1985).
  18. G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization (Wiley, 1999).
  19. M. A. Saad, Thermodynamics: Principles and Practice (Prentice Hall, 1997).
  20. P. E. Green, Fiber-Optic Networks (Prentice Hall, 1993).
  21. F. Karinou, I. Roudas, B. R. Hemenway, and R. R. Grzybowski, “Physical layer performance of HPC optical interconnect architectures,” J. Lightwave Technol.29(21), 3167–3177 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited