OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20447–20458

Dynamics of transient absorption in bulk DKDP crystals following laser energy deposition

R. A. Negres, R. N. Raman, J. D. Bude, M. D. Feit, and S. G. Demos  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20447-20458 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transient changes in the optical properties of bulk DKDP material arising from its exposure to high temperatures and pressures associated with localized laser energy deposition are investigated. Two methods for initiation of laser-induced breakdown are used, intrinsic, involving relatively large energy deposition brought about by focusing of the laser beam to high intensities, and extrinsic, arising from more localized deposition due to the presence of pre-existing absorbing damage initiating defects. Each method leads to a very different volume of material being affected, which provides for different material thermal relaxation times to help better understand the processes involved.

© 2012 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.4330) Materials : Nonlinear optical materials
(160.4760) Materials : Optical properties

ToC Category:

Original Manuscript: May 16, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 30, 2012
Published: August 21, 2012

R. A. Negres, R. N. Raman, J. D. Bude, M. D. Feit, and S. G. Demos, "Dynamics of transient absorption in bulk DKDP crystals following laser energy deposition," Opt. Express 20, 20447-20458 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express10, 1444–1450 (2002). [PubMed]
  2. C. H. Li, X. Ju, X. D. Jiang, J. Huang, X. D. Zhou, Z. Zheng, W. D. Wu, W. G. Zheng, Z. X. Li, B. Y. Wang, and X. H. Yu, “High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies,” Opt. Express19, 6439–6449 (2011). [CrossRef] [PubMed]
  3. J. D. Musgraves, K. Richardson, and J. Himanshu, “Laser-induced structural modification, its mechanisms, and applications in glassy optical materials,” Opt. Mater. Express1, 921–935 (2011). [CrossRef]
  4. V. Mizeikis, S. Kohara, Y. Onishi, N. Hirao, A. Saito, A. Vailionis, and S. Juodkazis, “Synthesis of high-pressure phases of silica by laser-induced optical breakdown,” Appl. Phys. A104, 903–906 (2011). [CrossRef]
  5. R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett.90, 061115 (2007). [CrossRef]
  6. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett.82, 3230–3232 (2003). [CrossRef]
  7. R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express18, 10642–10649 (2010). [CrossRef] [PubMed]
  8. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17, 11469–11479 (2009). [CrossRef] [PubMed]
  9. Y. Kobayashi, S. Endo, K. Koto, T. Kikegawa, and O. Shimomura, “Phase transitions and amorphization of KH2PO4 at high pressure,” Phys. Rev. B51, 9302–9305 (1995). [CrossRef]
  10. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53, 1749–1761 (1996). [CrossRef]
  11. C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2−x)DxPO4 crystals,” Appl. Phys. Lett.89, 131901 (2006). [CrossRef]
  12. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26, 93–95 (2001). [CrossRef]
  13. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010). [CrossRef]
  14. S. G. Demos, P. DeMange, R. A. Negres, and M. D. Feit, “Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals,” Opt. Express18, 13788–13804 (2010). [CrossRef] [PubMed]
  15. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng.28, 1039–1068 (1989).
  16. H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE6720, 672003 (2007). [CrossRef]
  17. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92, 087401 (2004). [CrossRef] [PubMed]
  18. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett.81, 3149–3151 (2002). [CrossRef]
  19. A. Salleo, R. Chinsio, and F. Y. Genin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE3578, 456–471 (1999). [CrossRef]
  20. M. J. Matthews, C. W. Carr, H. A. Bechtel, and R. N. Raman, “Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica,” Appl. Phys. Lett.99, 151109 (2011). [CrossRef]
  21. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–81 (2004). [CrossRef]
  22. P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum.75, 3298–3301 (2004). [CrossRef]
  23. P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng.45, 104205 (2006). [CrossRef]
  24. M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse-scaling experiments on rapid-growth DKDP triplers using the optical sciences laser at 351 nm,” Proc. SPIE4347, 359–372 (2001). [CrossRef]
  25. C. W. Carr, M. J. Matthews, J. D. Bude, and M. L. Spaeth, “The effect of laser pulse duration on laser-induced damage in KDP and SiO2,” Proc. SPIE6403, 64030K (2006). [CrossRef]
  26. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50, 013602 (2011). [CrossRef]
  27. P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett.30, 221–223 (2005). [CrossRef] [PubMed]
  28. R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30, 2766–2768 (2005). [CrossRef] [PubMed]
  29. N. Zaitseva and L. Carman, “Rapid growth of KDP-type crystals,” Prog. Cryst. Growth Charact.43, 1–118 (2001). [CrossRef]
  30. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35, 2702–2704 (2010). [CrossRef] [PubMed]
  31. T. Fang and J. C. Lambropoulos, “Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP),” J. Am. Ceram. Soc.85, 174–178 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited