OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20466–20481

Optimum selection of input polarization states in determining the sample Mueller matrix: a dual photoelastic polarimeter approach

D. Layden, M. F. G. Wood, and I. A. Vitkin  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20466-20481 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual photoelastic modulator polarimeter systems are widely used for the measurement of light beam polarization, most often described by Stokes vectors, that carry information about an interrogated sample. The sample polarization properties can be described more thoroughly through its Mueller matrix, which can be derived from judiciously chosen input polarization Stokes vectors and correspondingly measured output Stokes vectors. However, several sources of error complicate the construction of a Mueller matrix from the measured Stokes vectors. Here we present a general formalism to examine these sources of error and their effects on the derived Mueller matrix, and identify the optimal input polarization states to minimize their effects in a dual photoelastic modulator polarimeter configuration. The input Stokes vector states leading to the most robust Mueller matrix determination are shown to form Platonic solids in the Poincaré sphere space; we also identify the optimal 3D orientation of these solids for error minimization.

© 2012 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4090) Medical optics and biotechnology : Modulation techniques
(230.4110) Optical devices : Modulators
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 6, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 22, 2012
Published: August 21, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

D. Layden, M. F. G. Wood, and I. A. Vitkin, "Optimum selection of input polarization states in determining the sample Mueller matrix: a dual photoelastic polarimeter approach," Opt. Express 20, 20466-20481 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Phil. Soc.9, 399–416 (1852).
  2. E. Collett, Field Guide to Polarization (SPIE Press, 2005). [CrossRef]
  3. H. Poincaré, Théorie mathématique de la lumière (Gauthiers-Villars, 1892). [PubMed]
  4. H. Mueller, “Memorandum on the polarization optics of the photoelastic shutter,” Report No. 2 of the OSRD project OEMsr-576, (1943).
  5. N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton.2, 145–156 (2009). [CrossRef]
  6. D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt.9, 213–220 (2004). [CrossRef] [PubMed]
  7. X. Guo, M. F. G. Wood, and I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt.11, 041105 (2006). [CrossRef] [PubMed]
  8. S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 2nd ed. (Prentice-Hall, 1989).
  9. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part 1,” Opt. Eng.34, 1651–1655 (1995). [CrossRef]
  10. E. Garcia-Caurel, A. D. Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films455, 120–123 (2004). [CrossRef]
  11. P. A. Letnes, I. S. Nerbø, L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express18, 23095–23103 (2010). [CrossRef] [PubMed]
  12. A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films455, 112–119 (2004). [CrossRef]
  13. A. D. Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett.28, 616–618 (2003). [CrossRef] [PubMed]
  14. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett.25, 802–804 (2000). [CrossRef]
  15. S. N. Savenkov, “Optimization and structuring of the instrument matrix for polarimetric measurements,” Opt. Eng.41, 965–972 (2002). [CrossRef]
  16. M. H. Smith, “Optimization of a dual-rotating-retarder Mueller matrix polarimeter,” Appl. Opt.41, 2488–2493 (2002). [CrossRef] [PubMed]
  17. K. M. Twietmeyer and R. A. Chipman, “Optimization of Mueller matrix polarimeters in the presence of error sources,” Opt. Express16, 11589–11603 (2008). [CrossRef] [PubMed]
  18. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt.41, 619–630 (2002). [CrossRef] [PubMed]
  19. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett.25, 1198–1200 (2000). [CrossRef]
  20. I. J. Vaughn and B. G. Hoover, “Noise reduction in a laser polarimeter based on discrete waveplate rotations,” Opt. Express16, 2091–2108 (2008). [CrossRef] [PubMed]
  21. J. Zallat, S. Aïnouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors,” J. Opt. A, Pure Appl. Opt.8, 807–814 (2006). [CrossRef]
  22. G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. (The Johns Hopkins University Press, 1996).
  23. W. Guan, G. A. Jones, Y. Liu, and T. H. Shen, “The measurement of the Stokes parameters: a generalized methodology using a dual photoelastic modulator system,” J. Appl. Phys.103, 043104 (2008). [CrossRef]
  24. G. H. Golub and V. Pereyra, “The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate,” SIAM J. Numer. Anal.10, 413–432 (1973). [CrossRef]
  25. J. Dattorro, Convex Optimization & Euclidean Distance Geometry (Meboo Publishing USA, 2005). [PubMed]
  26. J. Stewart, Calculus Early Transcendentals, 6th ed. (Thompson Brooks/Cole, 2008).
  27. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part 2,” Opt. Eng.34, 1656–1658 (1995). [CrossRef]
  28. R. M. A. Azzam, I. M. Elminyawi, and A. M. El-Saba, “General analysis and optimization of the four-detector photopolarimeter,” J. Opt. Soc. Am. A5, 681–689 (1988). [CrossRef]
  29. M. Atiyah and P. Sutcliffe, “Polyhedra in physics, chemistry and geometry,” Milan J. Math.71, 33–58 (2003). [CrossRef]
  30. A. P. Arya, Introduction to Classical Mechanics, 2nd ed. (Prentice-Hall, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPEG (2334 KB)     
» Media 2: MPEG (2344 KB)     
» Media 3: MPEG (2176 KB)     
» Media 4: MPEG (2348 KB)     
» Media 5: MPEG (2170 KB)     
» Media 6: MPEG (5032 KB)     
» Media 7: PDF (258 KB)     
» Media 8: PDF (33 KB)     
» Media 9: PDF (41 KB)     
» Media 10: PDF (56 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited