OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20564–20575

Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing

Li Fan, Leo T. Varghese, Yi Xuan, Jian Wang, Ben Niu, and Minghao Qi  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20564-20575 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1923 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a process to fabricate silicon photonic devices directly on a plastic film which is both flexible and transparent. This process allows the integration of complex structures on plastic films without the need of transferring from another substrate. Waveguides, grating couplers, and microring resonators are fabricated and optically characterized. An optical strain sensor is shown as an application using 5 µm-radius microring resonators on the flexible substrate. When strain is applied, resonance wavelength shifts of the microring resonators are observed. Contributions of different effects are analyzed and evaluated. Finally, we measure the influence of residual strain and confirm the material undergoes elastic deformation within the applied strain range.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.1050) Materials : Acousto-optical materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Integrated Optics

Original Manuscript: July 12, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: August 20, 2012
Published: August 22, 2012

Virtual Issues
October 15, 2012 Spotlight on Optics

Li Fan, Leo T. Varghese, Yi Xuan, Jian Wang, Ben Niu, and Minghao Qi, "Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing," Opt. Express 20, 20564-20575 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010). [CrossRef]
  2. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science335(6067), 447–450 (2012). [CrossRef] [PubMed]
  3. F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010). [CrossRef]
  4. D.-H. Kim and J. A. Rogers, “Bend, buckle, and fold: mechanical engineering with nanomembranes,” ACS Nano3(3), 498–501 (2009). [CrossRef] [PubMed]
  5. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008). [CrossRef] [PubMed]
  6. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011). [CrossRef] [PubMed]
  7. S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science290(5496), 1536–1540 (2000). [CrossRef] [PubMed]
  8. S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O'Donnell, “Ultrasound detection using polymer microring optical resonator,” Appl. Phys. Lett.85(22), 5418–5420 (2004). [CrossRef]
  9. B. Bhola and W. H. Steier, “A novel optical microring resonator accelerometer,” IEEE Sens. J.7(12), 1759–1766 (2007). [CrossRef]
  10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol.24(4), 1843–1849 (2006). [CrossRef]
  11. B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005). [CrossRef]
  12. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011). [CrossRef] [PubMed]
  13. W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009). [CrossRef]
  14. D. Taillaert, W. V. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-on-insulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007). [CrossRef]
  15. J. Yoon, L. F. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011). [CrossRef] [PubMed]
  16. D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, “Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics,” NPG Asia Mater.4(4), e15 (2012). [CrossRef]
  17. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009). [CrossRef]
  18. W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campenhout, D. Van Thourhout, and R. Baets, “SOI nanophotonic waveguide structures fabricated with deep UV lithography,” Photon. Nano. Fund. Appl.2(2), 81–86 (2004). [CrossRef]
  19. U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow, T. Plotzing, M. Forst, and H. Kurz, “Fabrication of photonic ring resonator device in silicon waveguide technology using soft UV-nanoimprint lithography,” IEEE Photon. Technol. Lett.20(7), 490–492 (2008). [CrossRef]
  20. W. J. Westerveld, J. Pozo, P. J. Harmsma, R. Schmits, E. Tabak, T. C. van den Dool, S. M. Leinders, K. W. A. van Dongen, H. P. Urbach, and M. Yousefi, “Characterization of a photonic strain sensor in silicon-on-insulator technology,” Opt. Lett.37(4), 479–481 (2012). [CrossRef] [PubMed]
  21. Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008). [CrossRef]
  22. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005). [CrossRef]
  23. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009). [CrossRef]
  24. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010). [CrossRef] [PubMed]
  25. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009). [CrossRef]
  26. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness, in microphotonic waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005). [CrossRef]
  27. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  28. Y. B. Tang, D. X. Dai, and S. L. He, “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits,” IEEE Photon. Technol. Lett.21(4), 242–244 (2009). [CrossRef]
  29. L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface eEolution (Cambridge University Press, Cambridge, UK; New York, 2003).
  30. O. Renner and J. Zemek, “Density of amorphous silicon films,” Czech. J. Phys. B23, 1273–1276 (1973).
  31. D. J. McClure, “Polyester (PET) Film as a Substrate: a Tutorial,” in Proceedings of the 50th Anuual Technical Conference of the Society of Vacuum Coaters(2007), pp. 692–699 (2007).
  32. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012). [CrossRef]
  33. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  34. H. Gleskova and S. Wagner, “Amorphous silicon thin-film transistors on compliant polyimide foil substrates,” IEEE Electron Device Lett.20(9), 473–475 (1999). [CrossRef]
  35. Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett.74(8), 1177–1179 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited