OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20576–20581

Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition

Jung Woo Leem and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20576-20581 (2012)
http://dx.doi.org/10.1364/OE.20.020576


View Full Text Article

Enhanced HTML    Acrobat PDF (1526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θinc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λc) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θinc of 70°, the ∆λ/λc was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.

© 2012 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: July 17, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: August 15, 2012
Published: August 22, 2012

Citation
Jung Woo Leem and Jae Su Yu, "Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition," Opt. Express 20, 20576-20581 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997). [CrossRef]
  2. F. Liu, M. T. Umlor, L. Shen, J. Weston, W. Eads, J. A. Barnard, and G. J. Mankey, “The growth of nanoscale structured iron films by glancing angle deposition,” J. Appl. Phys.85(8), 5486–5488 (1999). [CrossRef]
  3. S. J. Jang, Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech.205, S447–S450 (2010). [CrossRef]
  4. Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(9), 2500–2505 (2008). [CrossRef]
  5. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011). [CrossRef] [PubMed]
  6. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  7. K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt.43(7), 1570–1576 (2004). [CrossRef] [PubMed]
  8. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express1(3), 451–457 (2011). [CrossRef]
  9. Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys.45(4B), 3446–3448 (2006). [CrossRef]
  10. O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett.66(3), 329–331 (1995). [CrossRef]
  11. Y. H. Lin, C. L. Wu, Y. H. Pai, and G. R. Lin, “A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector,” Opt. Express19(7), 6563–6570 (2011). [CrossRef] [PubMed]
  12. J. Boucart, C. Starck, F. Gaborit, A. Plais, N. Bouché, E. Derouin, J. C. Remy, J. Bonnet-Gamard, L. Goldstein, C. Fortin, D. Carpentier, P. Salet, F. Brillouet, and J. Jacquet, “Metamorphic DBR and tunnel-junction injection: A CW RT monolithic long-wavelength VCSEL,” IEEE J. Sel. Top. Quantum Electron.5(3), 520–529 (1999). [CrossRef]
  13. D. J. Ripin, J. T. Gopinath, H. M. Shen, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser,” Opt. Commun.214(1-6), 285–289 (2002). [CrossRef]
  14. D. K. Pandya and K. L. Chopra, “Obliquely deposited amorphous Ge films. I. Optical properties,” Phys. Status Solidi, A Appl. Res.35, 725–734 (1976). [CrossRef]
  15. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett.88(1), 013501 (2006). [CrossRef]
  16. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  17. SOPRA, http://www.sopra-sa.com , Accessed 1 June (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited