OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20599–20604

All-dielectric optical nanoantennas

Alexander E. Krasnok, Andrey E. Miroshnichenko, Pavel A. Belov, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20599-20604 (2012)
http://dx.doi.org/10.1364/OE.20.020599


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study in detail a novel type of optical nanoantennas made of high-permittivity low-loss dielectric particles. In addition to the electric resonances, the dielectric particles exhibit very strong magnetic resonances at the nanoscale, that can be employed in the Yagi-Uda geometry for creating highly efficient optical nanoantennas. By comparing plasmonic and dielectric nanoantennas, we demonstrate that all-dielectric nanoantennas may exhibit better radiation efficiency also allowing more compact design.

© 2012 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Scattering

History
Original Manuscript: June 20, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 16, 2012
Published: August 23, 2012

Citation
Alexander E. Krasnok, Andrey E. Miroshnichenko, Pavel A. Belov, and Yuri S. Kivshar, "All-dielectric optical nanoantennas," Opt. Express 20, 20599-20604 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express16, 10858–10866 (2008). [CrossRef] [PubMed]
  2. L. Novotny, “Optical antennas tuned to pitch,” Nature (London)455, 887 (2008). [CrossRef]
  3. A. F. Koenderink, “Plasmon Nanoparticle Array Waveguides for Single Photon and Single Plasmon Sources,” Nano Lett.9, 4228–4233 (2009). [CrossRef] [PubMed]
  4. A. Devilez, B. Stout, and N. Bonod, “Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission,” ACS Nano4, 3390–3396 (2010). [CrossRef] [PubMed]
  5. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2010). [CrossRef]
  6. J. Dorfmuller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett.11, 2819–2824 (2011). [CrossRef] [PubMed]
  7. A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL5, 347–349 (2011). [CrossRef]
  8. C. Balanis, Antenna Theory: Analysis and Design (New York ; Brisbane: J. Wiley, 1982).
  9. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. USA108, 3147–3151 (2011). [CrossRef] [PubMed]
  10. M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission: errata,” Opt. Express20, 18609–18610 (2012). [CrossRef]
  11. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett.12, 3749–3755 (2012). [CrossRef] [PubMed]
  12. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012). [CrossRef] [PubMed]
  13. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles,” JETP Letters94, 635–640 (2011). [CrossRef]
  14. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Yu. S. Kivshar, “Broadband Unidirectional Scattering by Magneto-Electric CoreShell Nanoparticles,” ACS Nano6, 54895497 (2012). [CrossRef] [PubMed]
  15. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (New York : Wiley, 1998). [CrossRef]
  16. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically Induced Interaction of Magnetic Moments in Hybrid Metamaterials,” ACS Nano6, 837–842 (2012). [CrossRef]
  17. E. Palik, Handbook of Optical Constant of Solids (San Diego, Academic, 1985).
  18. O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76, 043834 (2007). [CrossRef]
  19. M. Kerker, P. Scheiner, and D. D. Cooke, “The range of validity of the Rayleigh and Thomson limits for Lorenz-Mie scattering,” J. Opt. Soc. Am.68, 135–137 (1978). [CrossRef]
  20. B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitterparticle distance on the directivity of optical antennas,” Opt. Lett.36, 3368–3370 (2011). [CrossRef] [PubMed]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006). [CrossRef]
  22. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys.87, 1355–1360 (1987). [CrossRef]
  23. Yu-lin Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Quant J. Spectrosc. Radiat. Transfer70, 395–419 (2001). [CrossRef]
  24. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Lett.5, 585–589 (2005). [CrossRef] [PubMed]
  25. B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B28, 1213–1223 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited