OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20647–20658

Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy

Kazuue Fujita, Masamichi Yamanishi, Shinichi Furuta, Kazunori Tanaka, Tadataka Edamura, Tillmann Kubis, and Gerhard Klimeck  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20647-20658 (2012)
http://dx.doi.org/10.1364/OE.20.020647


View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 18, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 20, 2012
Published: August 23, 2012

Citation
Kazuue Fujita, Masamichi Yamanishi, Shinichi Furuta, Kazunori Tanaka, Tadataka Edamura, Tillmann Kubis, and Gerhard Klimeck, "Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy," Opt. Express 20, 20647-20658 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20647


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  2. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007) (and references cited therein). [CrossRef]
  3. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express16(5), 3242–3248 (2008). [CrossRef] [PubMed]
  4. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett.94(13), 131105 (2009). [CrossRef]
  5. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012). [CrossRef] [PubMed]
  6. M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes interahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97(22), 221114 (2010). [CrossRef]
  7. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  8. M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express16(25), 20748–20758 (2008). [CrossRef] [PubMed]
  9. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (~450 K) of long-wavelength (~15 μm), low-threshold-current density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett.97(20), 201109 (2010). [CrossRef]
  10. H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett.94(15), 151109 (2009). [CrossRef]
  11. A. Wacker, “Extraction-controlled quantum cascade lasers,” Appl. Phys. Lett.97(8), 081105 (2010). [CrossRef]
  12. T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett.97(26), 261106 (2010). [CrossRef]
  13. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quntum cascade laser operating significantly above the temperature of ħω/kB,” Nat. Phys.7(2), 166–171 (2011). [CrossRef]
  14. M. Yamanishi, K. Fujita, T. Kubis, N. Yu, T. Edamura, K. Tanaka, G. Klimeck, and F. Capasso, “Indirect pumping operation of THz InGaAs/InAlAs quantum-cascade-lasers,” paper presented at Eleventh International Conference on Intersubband Transitions in Quantum Wells, Badesi, Italy, 11–17, September 2011.
  15. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012). [CrossRef]
  16. S. Fathololoumi, E. Dupont, Z. R. Wasilewski, G. Aers, S. R. Laframboise, S. G. Razavipour, M. Lindskog, A. Wacker, D. Ban, and H. C. Liu, “Terahertz quantum cascade lasers based on phonon scattering assisted injection and extraction,” paper presented at Conference on Lasers and Electro-Optics (CLEO 2012), CTh4N.4, San Jose, CA, USA, 6–11, May 2012.
  17. M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Temperature dependence of thermal conductivity and boundary resistance in THz quantum cascade lasers,” IEEE J. Quantum Electron.14(2), 431–435 (2008). [CrossRef]
  18. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B80(24), 245316 (2009). [CrossRef]
  19. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B79(19), 195323 (2009). [CrossRef]
  20. T. C. Kubis, “Quantum Transport in semiconductor nanostructures,” in Selected Topics of Semiconductor Physics and Technology (Munich, Germany, 2009) vol. 114.
  21. The energy-diffusion model has been recently proposed by one (MY) of the authors; M. Yamanishi, unpublished note (2012).
  22. P. Harrison and R. W. Kelsall, “The relative importance of electron-electron and electron-phonon scattering in terahertz quantum cascade lasers,” Solid-State Electron.42(7-8), 1449–1451 (1998). [CrossRef]
  23. M. S. Vitiello, R. C. Iotti, F. Rossi, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, Q. Hu, and G. Scamarcio, “Non-equilibrium longitudinal and transverse optical phonons in terahertz quantum cascade lasers,” Appl. Phys. Lett.100(9), 091101 (2012). [CrossRef]
  24. M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett.86(11), 111115 (2005). [CrossRef]
  25. T. Liu, T. Kubis, Q. Jie Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on noequilibrium Green’s function analysis,” Appl. Phys. Lett.100(12), 122110 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited