OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20659–20665

Efficient light coupling into in-plane semiconductor nanomembrane photonic devices utilizing a sub-wavelength grating coupler

Harish Subbaraman, Xiaochuan Xu, John Covey, and Ray T. Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20659-20665 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a subwavelength grating (SWG) coupler for coupling light efficiently into in-plane semiconductor nanomembrane photonic devices for the first time. The SWG coupler consists of a periodic array of rectangular trenches fabricated on a silicon nanomembrane (SiNM) transferred onto a glass substrate. At a wavelength of 1555.56 nm, the coupling efficiency of the fabricated 10 µm wide, 17.1 µm long SWG is 39.17% (−4.07 dB), with 1 dB and 3 dB bandwidths of 29 nm and 57 nm, respectively. Peak efficiency varies by 0.26 dB when measuring 5 fabricated grating pairs. Coupling efficiency can further be improved with an improved SiNM transfer process. Such high efficiency couplers allow for the successful realization of a plethora of hybrid photonic devices utilizing nanomembrane technology.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(160.1245) Materials : Artificially engineered materials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

Original Manuscript: July 19, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: August 20, 2012
Published: August 23, 2012

Harish Subbaraman, Xiaochuan Xu, John Covey, and Ray T. Chen, "Efficient light coupling into in-plane semiconductor nanomembrane photonic devices utilizing a sub-wavelength grating coupler," Opt. Express 20, 20659-20665 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett.84(26), 5398–5400 (2004). [CrossRef]
  2. E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett.86(9), 093507 (2005). [CrossRef]
  3. F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter6(3), 439–455 (2010). [CrossRef]
  4. M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, “Elastically relaxed free-standing strained-silicon nanomembranes,” Nat. Mater.5(5), 388–393 (2006). [CrossRef] [PubMed]
  5. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. Y. Huang, Z. J. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008). [CrossRef] [PubMed]
  6. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006). [CrossRef]
  7. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011). [CrossRef] [PubMed]
  8. Y. Yang, Y. Hwang, H. A. Cho, J. H. Song, S. J. Park, J. A. Rogers, and H. C. Ko, “Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Roller-Type Stamps,” Small7(4), 484–491 (2011). [CrossRef] [PubMed]
  9. J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo, and J. A. Rogers, “High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Lett.27(6), 460–462 (2006). [CrossRef]
  10. D.-H. Kim, J.-H. Ahn, H.-S. Kim, K. J. Lee, T.-H. Kim, C.-J. Yu, R. G. Nuzzo, and J. A. Rogers, “Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon,” IEEE Electron Device Lett.29(1), 73–76 (2008). [CrossRef]
  11. H. Pang, H.-C. Yuan, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible Microwave Single-Crystal Si TFTs with fmax of 5.5 GHz,” Device Research Conference 2007 65th Annual, 15–16 (2007).
  12. L. Sun, G. Qin, J.-H. Seo, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics,” Small6(22), 2553–2557 (2010). [CrossRef] [PubMed]
  13. G. Qin, H.-C. Yuan, G. K. Celler, W. Zhou, J. Ma, and Z. Ma, “RF model of flexible microwave single-crystalline silicon nanomembrane PIN diodes on plastic substrate,” Microelectron. J.42(3), 509–514 (2011). [CrossRef]
  14. X. Xu, H. Subbaraman, A. Hosseini, C.-Y. Lin, D. Kwong, and R. T. Chen, “Stamp Printing of Silicon-Nanomembrane-Based Photonic Devices onto Flexible Substrates with a Suspended Configuration,” Opt. Lett.37(6), 1020–1022 (2012). [CrossRef] [PubMed]
  15. Z. Y. Dang, M. Motapothula, Y. S. Ow, T. Venkatesan, M. B. H. Breese, M. A. Rana, and A. Osman, “Fabrication of large-area ultra-thin single crystal silicon membranes,” Appl. Phys. Lett.99(22), 223105 (2011). [CrossRef]
  16. W. D. Zhou, Z. Q. Ma, H. J. Yang, Z. X. Qiang, G. X. Qin, H. Q. Pang, L. Chen, W. Q. Yang, S. Chuwongin, and D. Y. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009). [CrossRef]
  17. G. X. Qin, H. C. Yuan, G. K. Celler, W. D. Zhou, and Z. Q. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys.42(23), 234006 (2009). [CrossRef]
  18. M. J. Zablocki, A. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane transfer process for intricate photonic device applications,” Opt. Lett.36(1), 58–60 (2011). [CrossRef] [PubMed]
  19. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  20. R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett.34(9), 1408–1410 (2009). [CrossRef] [PubMed]
  21. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010). [CrossRef] [PubMed]
  22. C. Xia and H. K. Tsang, “Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers,” IEEE Photon. J.1(3), 184–190 (2009). [CrossRef]
  23. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423 (1977). [CrossRef]
  24. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited