OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20698–20704

Surface plasmon-enhanced lasing in dye-doped cholesteric liquid crystals

Cheng-Yu Shih and Hui-Chen Yeh  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20698-20704 (2012)
http://dx.doi.org/10.1364/OE.20.020698


View Full Text Article

Enhanced HTML    Acrobat PDF (996 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study shows the results of a photonic band-edge laser using dye-doped cholesteric liquid crystals (CLCs) combined with silver (Ag) nanoparticles. When the Ag nanoparticle surface plasmon resonance wavelength matched the excitation source wavelength, the large optical fields provided by surface plasmons increased the fluorescence of dye molecules by enhancing the molecular excitation rate, achieving a low lasing threshold and high pumping efficiency.

© 2012 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(160.3710) Materials : Liquid crystals
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 6, 2012
Revised Manuscript: August 22, 2012
Manuscript Accepted: August 22, 2012
Published: August 24, 2012

Citation
Cheng-Yu Shih and Hui-Chen Yeh, "Surface plasmon-enhanced lasing in dye-doped cholesteric liquid crystals," Opt. Express 20, 20698-20704 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998). [CrossRef] [PubMed]
  2. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett.90(9), 091114 (2007). [CrossRef]
  3. S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(6), 061709 (2006). [CrossRef] [PubMed]
  4. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys.97(2), 023103 (2005). [CrossRef]
  5. C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys.107(4), 043101 (2010). [CrossRef]
  6. Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett.87(23), 231107 (2005). [CrossRef]
  7. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express14(9), 3906–3916 (2006). [CrossRef] [PubMed]
  8. K. Amemiya, T. Nagata, M. H. Song, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Enhancement of laser emission intensity in dye-doped cholesteric liquid crystals with single-output window,” Jpn. J. Appl. Phys.44(6A), 3748–3750 (2005). [CrossRef]
  9. C. Mowatt, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “High slope efficiency liquid crystal lasers,” Appl. Phys. Lett.97(25), 251109 (2010). [CrossRef]
  10. S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of RHO6G dye using silver nanoparticles,” Bull. Mater. Sci.31(3), 541–544 (2008). [CrossRef]
  11. D. Ancukiewicz, NNIN REU Research Accomplishments (National Nanotechnology Infrastructure Network, 2008).
  12. R.-Y. He, G.-L. Chang, H.-L. Wu, C.-H. Lin, K.-C. Chiu, Y.-D. Su, and S.-J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express14(20), 9307–9316 (2006). [CrossRef] [PubMed]
  13. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun.286(5), 875–879 (2001). [CrossRef] [PubMed]
  14. A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett.95(2), 023117 (2009). [CrossRef]
  15. S.-H. Chen and J.-Y. Jhong, “Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode,” Opt. Express19(18), 16843–16850 (2011). [CrossRef] [PubMed]
  16. O. Popov, A. Zilbershtein, and D. Davidov, “Enhanced amplified emission induced by surface plasmons on gold nanoparticles in polymer film random lasers,” Polym. Adv. Technol.18(9), 751–755 (2007). [CrossRef]
  17. T. Nakamura, T. Hosaka, and S. Adachi, “Gold-nanoparticle-assisted random lasing from powdered GaN,” Opt. Express19(2), 467–475 (2011). [CrossRef] [PubMed]
  18. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  19. T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express15(20), 12806–12817 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited