OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20730–20741

flatFLIM: enhancing the dynamic range of frequency domain FLIM

Klaus C. Schuermann and Hernán E. Grecco  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20730-20741 (2012)
http://dx.doi.org/10.1364/OE.20.020730


View Full Text Article

Enhanced HTML    Acrobat PDF (3059 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence Lifetime Imaging Microscopy (FLIM) is a quantitative technique to probe the nanoenvironment of fluorescent molecules. It is the most robust way to quantify Förster Resonance Energy Transfer (FRET) as it allows reliable differentiation between concentration changes and quenching. In this way, molecular interactions can be imaged in single living cells. The most common wide-field implementation is homodyne Frequency Domain (FD) FLIM, which determines the fluorescence lifetime by measuring the phase and modulation changes of the fluorescence in each pixel upon excitation with a light source modulated at a high frequency. The fluorescence lifetimes are derived from a stack of images acquired at different phase shifts between excitation and detection. In this work we describe a simple method to enhance the dynamic range of FD-FLIM based on precompensating the expected fluorescence modulation by varying the laser power through the phase stack. We show theoretically and experimentally that most of the dynamic range of the camera can be recovered to quantify cells with different intensities. This improvement can be added to any FD-FLIM setup with minimal modifications, enhancing the throughput of information content.

© 2012 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 18, 2012
Revised Manuscript: July 25, 2012
Manuscript Accepted: August 1, 2012
Published: August 24, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Klaus C. Schuermann and Hernán E. Grecco, "flatFLIM: enhancing the dynamic range of frequency domain FLIM," Opt. Express 20, 20730-20741 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20730


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM.” Molecules (Basel, Switzerland)17, 4047–132 (2012). [CrossRef]
  2. R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox.” Trends Cell Biol.21, 682–91 (2011). [CrossRef] [PubMed]
  3. F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens, “Imaging biochemistry inside cells,” Trends Cell Biol.11, 203–211 (2001). [CrossRef] [PubMed]
  4. S. Ogikubo, T. Nakabayashi, T. Adachi, M. S. Islam, T. Yoshizawa, M. Kinjo, and N. Ohta, “Intracellular pH sensing using autofluorescence lifetime microscopy.” J. Phys. Chem. B115, 10385–90 (2011). [CrossRef] [PubMed]
  5. M. K. Kuimova, G. Yahioglu, J. A. Levitt, and K. Suhling, “Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging” J. Am. Chem. Soc.130, 6672–3 (2008). [CrossRef] [PubMed]
  6. T. Förster “Energy migration and fluorescence - 1946” J. Biomed. Opt.17, 011002–10 (2012). [CrossRef] [PubMed]
  7. E. A. Jares-Erijman and T. M. Jovin, “FRET imaging.” Nat. Biotechnol.21, 1387–95 (2003). [CrossRef] [PubMed]
  8. T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM) Spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem.48, 221–239 (1993). [CrossRef]
  9. R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P.B. Dhonukshe, C. J. F. Van Noorden, and E. M. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging” Nat. Biotechnol.25, 249–53 (2007). [CrossRef] [PubMed]
  10. W. Caarls, B. Rieger, A. H. B. De Vries, D. J. Arndt-Jovin, and T. M. Jovin, “Minimizing light exposure with the programmable array microscope” J. Microsc. (Oxford, U. K.)241, 101–10 (2011). [CrossRef]
  11. H. E. Grecco, P. Roda-Navarro, S. Fengler, and P. I. H. Bastiaens, “High-Throughput quantification of posttranslational modifications In Situ by CA-FLIM.” Methods Enzymol.500, 37–58 (2011). [CrossRef] [PubMed]
  12. E. B. van Munster and T. W. J. Gadella, “Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order.” Cytometry, Part A58, 185–94 (2004). [CrossRef]
  13. P. J. Verveer and P. I. H. Bastiaens, “Evaluation of global analysis algorithms for single frequency,” J. Microsc. (Oxford, U. K.)209, 1–7 (2003). [CrossRef]
  14. B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field frequency-domain fluorescence lifetime images” J. Microsc. (Oxford, U. K.)235, 221–237 (2009). [CrossRef]
  15. A. Esposito, C. P. Dohm, M. Bähr, and F. S. Wouters, “Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening.” Mol. Cell. Proteomics6, 1446–54 (2007). [CrossRef] [PubMed]
  16. H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, and P. I. H. Bastiaens, “In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays.” Nat. Methods7, 467–72 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited