OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20748–20753

Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction

Nishuang Liu, Weiwei Tian, Xianghui Zhang, Jun Su, Qi Zhang, and Yihua Gao  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20748-20753 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (6160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The giant improvement of ultraviolet response behavior of a conventional GaN p-n film structured detector by the incorporation of slanted GaN nanowires is reported. The GaN nanowires/p-n film structure shows great photoresponse performance, exhibiting a short response time <0.1 s and a high sensitivity, being stable and reproducible with an on/off current contrast ratio as high as 1800 at zero bias under 365 nm ultraviolet light irradiation. Via carefully analyzing the experiment result and the band diagram of the device, the enhancement can be predominantly attributed to the photogenerated electrons in the slanted GaN nanowires.

© 2012 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: June 7, 2012
Revised Manuscript: August 5, 2012
Manuscript Accepted: August 15, 2012
Published: August 24, 2012

Nishuang Liu, Weiwei Tian, Xianghui Zhang, Jun Su, Qi Zhang, and Yihua Gao, "Enhancement of ultraviolet detecting by coupling the photoconductive behavior of GaN nanowires and p-n junction," Opt. Express 20, 20748-20753 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Guha and N. A. Bojarczuk, “Ultraviolet and violet GaN light emitting diodes on silicon,” Appl. Phys. Lett.72(4), 415–417 (1998). [CrossRef]
  2. E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. A. Munoz, and F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol.13(9), 1042–1046 (1998). [CrossRef]
  3. M. Cazzanelli, D. Cole, J. F. Donegan, J. G. Lunney, P. G. Middleton, K. P. O'Donnell, C. Vinegoni, and L. Pavesi, “Photoluminescence of localized excitons in pulsed-laser-deposited GaN,” Appl. Phys. Lett.73(23), 3390–3392 (1998). [CrossRef]
  4. H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett.4(7), 1247–1252 (2004). [CrossRef]
  5. C. J. Sun, M. Z. Anwar, Q. Chen, J. W. Yang, M. A. Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN-GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.70(22), 2978–2980 (1997). [CrossRef]
  6. P. Waltereit, H. Sato, C. Poblenz, D. S. Green, J. S. Brown, M. McLaurin, T. Katona, S. P. DenBaars, J. S. Speck, J. H. Liang, M. Kato, H. Tamura, S. Omori, and C. Funaoka, “Blue GaN-based light-emitting diodes grown by molecular-beam epitaxy with external quantum efficiency greater than 1.5%,” Appl. Phys. Lett.84(15), 2748–2750 (2004). [CrossRef]
  7. P. Deb, H. Kim, Y. X. Qin, R. Lahiji, M. Oliver, R. Reifenberger, and T. Sands, “GaN nanorod Schottky and p-n junction diodes,” Nano Lett.6(12), 2893–2898 (2006). [CrossRef] [PubMed]
  8. C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, “GaN nanowire arrays for high-output nanogenerators,” J. Am. Chem. Soc.132(13), 4766–4771 (2010). [CrossRef] [PubMed]
  9. L. Lin, C. H. Lai, Y. F. Hu, Y. Zhang, X. Wang, C. Xu, R. L. Snyder, L. J. Chen, and Z. L. Wang, “High output nanogenerator based on assembly of GaN nanowires,” Nanotechnology22(47), 475401 (2011). [CrossRef] [PubMed]
  10. R. D. Underwood, S. Keller, U. K. Mishra, D. Kapolnek, B. P. Keller, and S. P. DenBaars, “GaN field emitter array diode with integrated anode,” J. Vac. Sci. Technol. B16(2), 822–825 (1998). [CrossRef]
  11. S. G. Hao, G. Zhou, J. Wu, W. H. Duan, and B. L. Gu, “Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays,” Phys. Rev. B69(11), 113403 (2004). [CrossRef]
  12. J. L. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, “Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.84(12), 2091–2093 (2004). [CrossRef]
  13. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Appl. Phys. Lett.91(22), 223106 (2007). [CrossRef]
  14. F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett.12(1), 172–176 (2012). [CrossRef] [PubMed]
  15. G. S. Aluri, A. Motayed, A. V. Davydov, V. P. Oleshko, K. A. Bertness, N. A. Sanford, and M. V. Rao, “Highly selective GaN-nanowire/TiO(2)-nanocluster hybrid sensors for detection of benzene and related environment pollutants,” Nanotechnology22(29), 295503 (2011). [CrossRef] [PubMed]
  16. X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys., A Mater. Sci. Process.107(2), 255–260 (2012). [CrossRef]
  17. H. Kang, J. Park, T. Choi, H. Jung, K. H. Lee, S. Im, and H. Kim, “n-ZnO:N/p-Si nanowire photodiode prepared by atomic layer deposition,” Appl. Phys. Lett.100(4), 041117 (2012). [CrossRef]
  18. W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Top. Quantum Electron.17(4), 996–1001 (2011). [CrossRef]
  19. R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, and C. R. Lin, “High-gain photoconductivity in semiconducting InN nanowires,” Appl. Phys. Lett.95(16), 162112 (2009). [CrossRef]
  20. R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett.90(24), 243106 (2007). [CrossRef]
  21. L. L. Low, F. K. Yam, K. P. Beh, and Z. Hassan, “The influence of Ga source and substrate position on the growth of low dimensional GaN wires by chemical vapour deposition,” Appl. Surf. Sci.257(23), 10052–10055 (2011). [CrossRef]
  22. T. Y. Kim, S. H. Lee, Y. H. Mo, H. W. Shim, K. S. Nahm, E. K. Suh, J. W. Yang, K. Y. Lim, and G. S. Park, “Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor,” J. Cryst. Growth257(1-2), 97–103 (2003). [CrossRef]
  23. X. Y. Han, Y. H. Gao, and X. H. Zhang, “One-dimensional GaN nanomaterials transformed from one-dimensional Ga2O3 and Ga nanomaterials,” Nano-Micro Lett.1, 4–8 (2009).
  24. J. C. Carrano, T. Li, D. L. Brown, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “High-speed pin ultraviolet photodetectors fabricated on GaN,” Electron. Lett.34(18), 1779–1781 (1998). [CrossRef]
  25. E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol.18(4), R33–R51 (2003). [CrossRef]
  26. K. Jarašiūnas, T. Malinauskas, S. Nargelas, V. Gudelis, J. V. Vaitkus, V. Soukhoveev, and A. Usikov, “Layer thickness dependent carrier recombination rate in HVPE GaN,” Phys. Status Solidi B247(7), 1703–1706 (2010). [CrossRef]
  27. A. Dmitriev and A. Oruzheinikov, “The rate of radiative recombination in the nitride semiconductors and alloys,” J. Appl. Phys.86(6), 3241–3246 (1999). [CrossRef]
  28. K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett.29(10), 1124–1127 (2008). [CrossRef]
  29. C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F. J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics5(9), 535–538 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited