OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20771–20782

Polarization studies for backscattering of RBC suspensions based on Mueller matrix decomposition

Xuezhen Wang, Jiancheng Lai, and Zhenhua Li  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20771-20782 (2012)
http://dx.doi.org/10.1364/OE.20.020771


View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tissue polarimetry has demonstrated its great potential in biomedical field presently. In this study, the polarization characteristics of red blood cell (RBC) suspensions in a back-detection geometry have been investigated with experimental measurements and Monte Carlo (MC) simulation based on Mueller matrix decomposition. It is revealed that the simulated dependence of degree of polarization (DOP) and diattenuation on the distance away from incident point is qualitatively consistent with experimental result. DOP and diattenuation decay with increasing radial distance except in the region adjacent to the incident point. Further analysis shows that the number of scattering events and the scattering angle simultaneously influence the trends of DOP and diattenuation curves in the central region.

© 2012 OSA

OCIS Codes
(110.7050) Imaging systems : Turbid media
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(290.1350) Scattering : Backscattering

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 7, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: August 20, 2012
Published: August 24, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Xuezhen Wang, Jiancheng Lai, and Zhenhua Li, "Polarization studies for backscattering of RBC suspensions based on Mueller matrix decomposition," Opt. Express 20, 20771-20782 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Boulvert, G. Le Brun, B. Le Jeune, J. Cariou, and L. Martin, “Decomposition algorithm of an experimental Mueller matrix,” Opt. Commun. 282(5), 692–704 (2009). [CrossRef]
  2. M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001). [CrossRef]
  3. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995). [CrossRef]
  4. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matricesof highly scattering media,” Opt. Express 1(13), 441–453 (1997). [CrossRef] [PubMed]
  5. B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23(7), 485–487 (1998). [CrossRef] [PubMed]
  6. M. J. Raković, G. W. Kattawar, M. B. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38(15), 3399–3408 (1999). [CrossRef] [PubMed]
  7. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42(21), 4389–4395 (2003). [CrossRef] [PubMed]
  8. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010). [CrossRef] [PubMed]
  9. X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt. 48(14), 2625–2631 (2009). [CrossRef] [PubMed]
  10. J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46(15), 3038–3045 (2007). [CrossRef] [PubMed]
  11. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009). [CrossRef] [PubMed]
  12. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011). [CrossRef] [PubMed]
  13. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996). [CrossRef]
  14. M. Itoh, M. Yamanari, Y. Yasuno, and T. Yatagai, “Polarization characteristics of multiple backscattering in human blood cell suspensions,” Opt. Quantum Electron. 37(13-15), 1277–1285 (2005). [CrossRef]
  15. X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003). [CrossRef] [PubMed]
  16. D. Côté and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13(1), 148–163 (2005). [CrossRef] [PubMed]
  17. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005). [CrossRef] [PubMed]
  18. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13(25), 10392–10405 (2005). [CrossRef] [PubMed]
  19. http://omlc.ogi.edu/software/polarization/
  20. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009). [CrossRef]
  21. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005). [CrossRef] [PubMed]
  22. J. Morio and F. Goudail, “Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices,” Opt. Lett. 29(19), 2234–2236 (2004). [CrossRef] [PubMed]
  23. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14(1), 190–202 (2006). [CrossRef] [PubMed]
  24. X. Wang, L. Yang, J. Lai, and Z. Li, “Polar decomposition applied to light back-scattering by erythrocyte suspensions,” Proc. SPIE 8192, 81924T, 81924T-6 (2011). [CrossRef]
  25. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999). [CrossRef]
  26. X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15(3), 1348–1360 (2007). [CrossRef] [PubMed]
  27. M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited