OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20790–20799

Enhanced optomechanical interaction in coupled microresonators

Jiahua Fan and Lin Zhu  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20790-20799 (2012)
http://dx.doi.org/10.1364/OE.20.020790


View Full Text Article

Enhanced HTML    Acrobat PDF (2252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the optomechanical interaction in two coupled microresonators. Compared to the single resonator optomechanical system where the input light is required to detune from the cavity resonance to generate two asymmetrical sidebands and thus large mechanical damping/amplification, the coupled resonator system can allow both the input light and its frequency sideband to be on resonance. In this configuration, we find that the optomechanical interaction can be enhanced and optically induced energy transfer between different mechanical oscillators is possible.

© 2012 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 25, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 20, 2012
Published: August 24, 2012

Citation
Jiahua Fan and Lin Zhu, "Enhanced optomechanical interaction in coupled microresonators," Opt. Express 20, 20790-20799 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15, 17172–17205 (2007). [CrossRef] [PubMed]
  2. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Lett.103, 223901 (2009). [CrossRef]
  3. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science330, 1520–1523 (2010). [CrossRef] [PubMed]
  4. W. H. P. Pernice, M. Li, and H. X. Tang, “Optomechanical coupling in photonic crystal supported nanomechanical waveguides,” Opt. Express17, 12424–12432 (2009). [CrossRef] [PubMed]
  5. D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nature Photon.4, 211–217 (2010). [CrossRef]
  6. F. Marquardt and S. Girvin, “Optomechanics,” Physics2, 40 (2009). [CrossRef]
  7. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwells equations with shifting material boundaries,” Phys. Rev. E65, 066611 (2002). [CrossRef]
  8. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett.30, 3042–3044 (2005). [CrossRef] [PubMed]
  9. D. G. Grier, “A revolution in optical manipulation,” Nature424, 810–816 (2003). [CrossRef] [PubMed]
  10. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  11. A. Xuereb, T. Freegarde, P. Horak, and P. Domokos, “Optomechanical cooling with generalized interferometers,” Phys. Rev. Lett.105, 013602 (2010). [CrossRef] [PubMed]
  12. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011). [CrossRef] [PubMed]
  13. Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 103601 (2009). [CrossRef] [PubMed]
  14. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Phys.5, 489–493 (2009). [CrossRef]
  15. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett.104, 083901 (2010). [CrossRef] [PubMed]
  16. A. Schliesser, P. DelHaye, N. Nooshi, K. Vahala, and T. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett.97, 243905 (2006). [CrossRef]
  17. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nature Photon.1, 416–422 (2007). [CrossRef]
  18. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phononphoton translator,” New J. Phys.13, 013017 (2011). [CrossRef]
  19. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009). [CrossRef] [PubMed]
  20. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009). [CrossRef] [PubMed]
  21. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011). [CrossRef] [PubMed]
  22. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature456, 480–484 (2008). [CrossRef] [PubMed]
  23. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express20, 8535–8542 (2012). [CrossRef] [PubMed]
  24. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Topics Quantum Electron.16, 276–287 (2010). [CrossRef]
  25. X. Sun, K. Y. Fong, C. Xiong, W. H. P. Pernice, and H. X. Tang, “GHz optomechanical resonators with high mechanical Q factor in air,” Opt. Express19, 22316–22321 (2011). [CrossRef] [PubMed]
  26. X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett.100, 173116 (2012) [CrossRef]
  27. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nature Photon.4, 236–242 (2010). [CrossRef]
  28. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462, 633–637 (2009). [CrossRef] [PubMed]
  29. S. Manipatruni, G. Weiderhecker, and M. Lipson, “Long-range synchronization of optomechanical structures,” OSA/CLEO (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited