OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20827–20834

Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses

Charles J. Regan, Robier Rodriguez, Shivkumar C. Gourshetty, Luis Grave de Peralta, and Ayrton A. Bernussi  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 20827-20834 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical images from nano-scale features were obtained by collection of leakage radiation coupled to surface plasmon polaritons excited by near-field fluorescence. Plasmonic crystals with spatial periods as small as 190 nm and non-periodic features separated by 80 nm, corresponding to ~λ/7, were clearly visible in the real plane images using this far-field technique. We show that the leaked light from the investigated samples carries detailed information to the far-field which is not present in the images obtained with conventional optical microscopy.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: July 3, 2012
Revised Manuscript: August 1, 2012
Manuscript Accepted: August 22, 2012
Published: August 28, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Charles J. Regan, Robier Rodriguez, Shivkumar C. Gourshetty, Luis Grave de Peralta, and Ayrton A. Bernussi, "Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses," Opt. Express 20, 20827-20834 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  3. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007). [CrossRef] [PubMed]
  4. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  5. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006). [CrossRef]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  7. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32(23), 3432–3434 (2007). [CrossRef] [PubMed]
  8. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express15(24), 15886–15891 (2007). [CrossRef] [PubMed]
  9. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett.7(11), 3360–3365 (2007). [CrossRef] [PubMed]
  10. Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express15(12), 7095–7102 (2007). [CrossRef] [PubMed]
  11. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  12. S. P. Frisbie, C. F. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009). [CrossRef]
  13. C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012). [CrossRef] [PubMed]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1988).
  15. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem.324(2), 153–169 (2004). [CrossRef] [PubMed]
  16. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004). [CrossRef] [PubMed]
  17. A. Giannattasio and W. L. Barnes, “Direct observation of surface plasmon-polariton dispersion,” Opt. Express13(2), 428–434 (2005). [CrossRef] [PubMed]
  18. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011). [CrossRef]
  19. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett.96(4), 043102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited