OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20863–20873

Method of compensating for pixel migration in volume holographic optical disc (VHOD)

Yeh-Wei Yu, Chih-Yuan Cheng, Tun-Chien Teng, Cheng-Hsien Chen, Shiuan-Huei Lin, Bo-Rong Wu, Che-Chih Hsu, Yi-Jiun Chen, Xuan-Hao Lee, Chi-Yu Wu, and Ching-Cherng Sun  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 20863-20873 (2012)
http://dx.doi.org/10.1364/OE.20.020863


View Full Text Article

Enhanced HTML    Acrobat PDF (1727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Volume holographic optical disc (VHOD) technology is simpler than the angular multiplexing holographic system. However, disc rotation usually causes pixel migration, thus reducing signal quality. This study proposes a special geometrical arrangement to counteract pixel migration. Using paraxial approximation analysis, an optimal geometrical distance ratio, K, is calculated to compensate for pixel migration and improve image quality during disc rotation. The results of approximation analysis are confirmed by both simulation and experimental results.

© 2012 OSA

OCIS Codes
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Optical Data Storage

History
Original Manuscript: May 15, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 5, 2012
Published: August 28, 2012

Citation
Yeh-Wei Yu, Chih-Yuan Cheng, Tun-Chien Teng, Cheng-Hsien Chen, Shiuan-Huei Lin, Bo-Rong Wu, Che-Chih Hsu, Yi-Jiun Chen, Xuan-Hao Lee, Chi-Yu Wu, and Ching-Cherng Sun, "Method of compensating for pixel migration in volume holographic optical disc (VHOD)," Opt. Express 20, 20863-20873 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-20863


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Digital Imaging and Communications in Medicine (DICOM), NEMA Standards Publications. http://medical.nema.org/ .
  2. K. D. Foord, “PACS workstation respecification: display, data flow, system integration, and environmental issues, derived from analysis of the Conquest Hospital pre-DICOM PACS experience,” Eur. Radiol.9(6), 1161–1169 (1999). [CrossRef] [PubMed]
  3. J. Bernarding, A. Thiel, and A. Grzesik, “A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption,” Int. J. Med. Inform.64(2-3), 429–438 (2001). [CrossRef] [PubMed]
  4. J. Fernàndez-Bayó, O. Barbero, C. Rubies, M. Sentís, and L. Donoso, “Distributing Medical Images with Internet Technologies: a DICOM Web Server and a DICOM Java Viewer,” Radiographics20(2), 581–590 (2000). [PubMed]
  5. R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook, “DICOM demystified: A review of digital file formats and their use in radiological practice,” Clin. Radiol.60(11), 1133–1140 (2005). [CrossRef] [PubMed]
  6. IBM, “Tape storage systems,” http://www-03.ibm.com/systems/storage/tape/ .
  7. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt.2(4), 393 (1963). [CrossRef]
  8. A. Pu and D. Psaltis, “Holographic data storage with 100 bits/μm2 density,” Optical Data Storage Topical Meeting Conference Digest, 48–49 (1997).
  9. G. W. Burr, C. M. Jefferson, H. Coufal, C. Gollasch, M. Jurich, J. A. Hoffnagle, R. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 100 Gbit/in2,” Conference on Lasers and Electro-Optics, 188–189 (2000).
  10. N. Butt, K. Mcstay, A. Cestero, H. Ho, W. Kong, S. Fang, R. Krishnan, B. Khan, A. Tessier, W. Davies, S. Lee, Y. Zhang, J. Johnson, S. Rombawa, R. Takalkar, A. Blauberg, K. V. Hawkins, J. Liu, S. Rosenblatt, P. Goyal, S. Gupta, J. Ervin, Z. Li, S. Galis, J. Barth, M. Yin, T. Weaver, J. H. Li, S. Narasimha, P. Parries, W. K. Henson, N. Robson, T. Kirihata, M. Chudzik, E. Maciejewski, P. Agnello, S. Stiffler, and S. S. Iyer, “A 0.039 μm2 High Performance eDRAM Cell based on 32nm High-K/Metal SOI Technology,” IEEE International Electron Devices Meeting, 27.5.1 – 27.5.4 (2010).
  11. L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE92(8), 1231–1280 (2004). [CrossRef]
  12. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett.18(12), 540–542 (1971). [CrossRef]
  13. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.20(2), 79–81 (1972). [CrossRef]
  14. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett.25(3), 155–157 (1974). [CrossRef]
  15. D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature393(6686), 665–668 (1998). [CrossRef]
  16. F. Liu, Y. Kong, X. Ge, H. Liu, S. Liu, S. Chen, R. Rupp, and J. Xu, “Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO3:Zr,Cu,Ce,” Opt. Express18(6), 6333–6339 (2010). [CrossRef] [PubMed]
  17. K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A Photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature357, 479–500 (1994).
  18. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008). [CrossRef] [PubMed]
  19. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  20. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt.35(14), 2403–2417 (1996). [CrossRef] [PubMed]
  21. H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt.33(17), 3764–3774 (1994). [CrossRef] [PubMed]
  22. T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express14(8), 3187–3192 (2006). [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
  24. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng.42(5), 1184–1185 (2003). [CrossRef]
  25. G. P. Nordin and P. Asthana, “Effects of cross talk on fidelity in page-oriented volume holographic optical data storage,” Opt. Lett.18(18), 1553–1555 (1993). [CrossRef] [PubMed]
  26. Members of the Technical Staff, Bell Laboratories, Transmission Systems for Communications (Bell Laboratories, Holmdel, N.J., 1971), Chap. 30, p. 726.
  27. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 382.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (1942 KB)      QuickTime
» Media 2: MPG (896 KB)      QuickTime
» Media 3: MPG (1210 KB)      QuickTime
» Media 4: MPG (1234 KB)      QuickTime
» Media 5: MPG (1282 KB)      QuickTime
» Media 6: MPG (1286 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited