OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20884–20893

6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. -M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 20884-20893 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1854 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on electro-optic modulation using a Lithium Niobate (LN) Photonic Crystal (PC) cavity structure. The compact device (6 μm in length) consists of a 2D photonic crystal cavity made on an Annealed Proton Exchange (APE) LN waveguide with vertical deposited electrodes. Experimental results show a tunability of 0.6 nm/V. This compact design opens a way towards micro and nano-scale tunable photonic devices with low driving electrical power.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3730) Integrated optics : Lithium niobate
(250.5300) Optoelectronics : Photonic integrated circuits
(250.4110) Optoelectronics : Modulators
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: June 6, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 31, 2012
Published: August 28, 2012

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. -M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, "6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity," Opt. Express 20, 20884-20893 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004). [CrossRef] [PubMed]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  5. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett.89(24), 241110 (2006). [CrossRef]
  6. B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett.83(23), 4704 (2003). [CrossRef]
  7. W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett.85(21), 4845 (2004). [CrossRef]
  8. H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett.16(6), 1528–1530 (2004). [CrossRef]
  9. M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett.86(22), 221111 (2005). [CrossRef]
  10. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express20(3), 2974–2981 (2012). [CrossRef] [PubMed]
  11. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010). [CrossRef]
  12. G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, “Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator,” Opt. Express19(8), 7530–7536 (2011). [CrossRef] [PubMed]
  13. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15(6), 3140–3148 (2007). [CrossRef] [PubMed]
  14. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys.44(30), 305101 (2011). [CrossRef]
  15. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express17(20), 17792–17800 (2009). [CrossRef] [PubMed]
  16. M. Roussey, M.-P. Bernal, and F. I. Baida, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B24(6), 1416–1422 (2007). [CrossRef]
  17. M. Paturzo, D. Alfieri, S. Grilli, P. Ferraro, P. De Natale, M. de Angelis, S. De Nicola, A. Fińizio, and G. Pierattini, “Investigation of electric internal field in congruent LiNbO3 by electro-optic effect,” Appl. Phys. Lett.85(23), 2875 (2004). [CrossRef]
  18. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, L. Sansone, D. Alfieri, and P. De Natale, “Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography,” Opt. Lett.30(13), 1671–1673 (2005). [CrossRef] [PubMed]
  19. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in Lithium Niobate crystals directly observed by digital holography,” Opt. Express13(14), 5416–5423 (2005). [CrossRef] [PubMed]
  20. G. W. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008). [CrossRef] [PubMed]
  21. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998). [CrossRef]
  22. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett.90(17), 171116 (2007). [CrossRef]
  23. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater.31(7), 1054–1058 (2009). [CrossRef]
  24. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express17(22), 20291–20300 (2009). [CrossRef] [PubMed]
  25. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, and E.-B. Kley, “Light propagation in a free-standing lithium niobate photonic crystal waveguide,” Appl. Phys. Lett.97(13), 131109 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited