OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20902–20907

Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency

Guoxi Wang, Hua Lu, and Xueming Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 20902-20907 (2012)
http://dx.doi.org/10.1364/OE.20.020902


View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have proposed a metal-insulator-metal (MIM) waveguide system, which exhibits a significant slow-light effect, based on a plasmonic analogue of electromagnetically induced transparency (EIT). By appropriately adjusting the distance between the two stubs of a unit cell, a flat band corresponding to nearly constant group index over a broad bandwidth of 8.6 THz can be achieved. The analytical results show that the group velocity dispersion (GVD) parameter can reach zero and normalized delay-bandwidth product (NDBP) is more than 0.522. Finite-Difference Time-Domain (FDTD) simulations show that the incident pulse can be slowed down without distortion owing to the low dispersion. The proposed compact configuration can avoid the distortion of signal pulse, and thus may find potential applications in plasmonic slow-light systems, especially optical buffers.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Slow and Fast Light

History
Original Manuscript: June 6, 2012
Revised Manuscript: August 12, 2012
Manuscript Accepted: August 24, 2012
Published: August 28, 2012

Citation
Guoxi Wang, Hua Lu, and Xueming Liu, "Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency," Opt. Express 20, 20902-20907 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-20902


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  2. C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 409–411 (2001). [CrossRef] [PubMed]
  3. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B22(5), 1062–1074 (2005). [CrossRef]
  4. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004). [CrossRef] [PubMed]
  5. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  6. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics1(10), 573–576 (2007). [CrossRef]
  7. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004). [CrossRef] [PubMed]
  8. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett.35(24), 4184–4186 (2010). [CrossRef] [PubMed]
  9. L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon ploaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009). [CrossRef]
  10. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional perildically structured metal surface,” Appl. Phys. Lett.90(20), 201906 (2007). [CrossRef]
  11. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008). [CrossRef] [PubMed]
  12. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009). [CrossRef] [PubMed]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  14. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  15. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010). [CrossRef] [PubMed]
  16. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19(4), 3513–3518 (2011). [CrossRef] [PubMed]
  17. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101(1), 013111 (2012). [CrossRef]
  18. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010). [CrossRef]
  19. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007). [CrossRef]
  20. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett.36(16), 3233–3235 (2011). [CrossRef] [PubMed]
  21. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A85(5), 053803 (2012). [CrossRef]
  22. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011). [CrossRef]
  23. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006). [CrossRef] [PubMed]
  24. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010). [CrossRef] [PubMed]
  25. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008). [CrossRef] [PubMed]
  26. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010). [CrossRef] [PubMed]
  27. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005). [CrossRef]
  28. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express17(22), 20134–20139 (2009). [CrossRef] [PubMed]
  29. X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011). [CrossRef] [PubMed]
  30. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express16(12), 9245–9253 (2008). [CrossRef] [PubMed]
  31. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express18(6), 5942–5950 (2010). [CrossRef] [PubMed]
  32. J. Zhang, L. Cai, W. Bai, and G. Song, “Flat surface plasmon polariton bands in Bragg grating waveguide for slow light,” J. Lightwave Technol.28(14), 2030–2036 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (380 KB)      QuickTime
» Media 2: MOV (518 KB)      QuickTime
» Media 3: MOV (720 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited