OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20920–20933

Under the hood of satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties

Michael J. Sauer, C. S. Roesler, P. J. Werdell, and A. Barnard  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 20920-20933 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Empirically-based satellite estimates of chlorophyll a [Chl] (e.g. OC3) are an important indicator of phytoplankton biomass. To correctly interpret [Chl] variability, estimates must be accurate and sources of algorithm errors known. While the underlying assumptions of band ratio algorithms such as OC3 have been tacitly hypothesized (i.e. CDOM and phytoplankton absorption covary), the influence of component absorption and scattering on the shape of the algorithm and estimated [Chl] error has yet to be explicitly revealed. We utilized the NOMAD bio-optical data set to examine variations between satellite estimated [Chl] and in situ values. We partitioned the variability into (a) signal contamination and (b) natural phytoplankton variability (variability in chlorophyll-specific phytoplankton absorption). Not surprisingly, the OC3 best-fit curve resulted from a balance between these two different sources of variation confirming the bias by detrital absorption on global scale. Unlike previous descriptions of empirical [Chl] algorithms, our study (a) quantified the mean detrital:phytoplankton absorption as ~1:1in the global NOMAD data set, and (b) removed detrital (CDOM + non-algal particle) absorption in radiative transfer models directly showing that the scale of the remaining variability in the band ratio algorithm was dominated by phytoplankton absorption cross section.

© 2012 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.1030) Atmospheric and oceanic optics : Absorption
(010.1350) Atmospheric and oceanic optics : Backscattering
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 22, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 11, 2012
Published: August 29, 2012

Michael J. Sauer, C. S. Roesler, P. J. Werdell, and A. Barnard, "Under the hood of satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties," Opt. Express 20, 20920-20933 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Yoder, “An overview of temporal and spatial patterns in satellite-derived chlorophyll-a imagery and their relation to ocean processes,” in: Satellites, Oceanography and Society D. Halpern, ed. (Elsevier Oceanography Series, 2000), pp. 225–234.
  2. W. W. Gregg, N. W. Casey, and C. R. McClain, “Recent trends in global ocean chlorophyll,” Geophys. Res. Lett.32(3), L03606 (2005). [CrossRef]
  3. J. H. Ryther and D. W. Menzel, “Light adaptation by marine phytoplankton,” Limnol. Oceanogr.4(4), 492–497 (1959). [CrossRef]
  4. P. G. Falkowski and T. G. Owens, “Light-shade adaptation: two strategies in marine phytoplankton,” Plant Physiol.66(4), 592–595 (1980). [CrossRef] [PubMed]
  5. M. J. Perry, M. C. Talbot, and R. S. Alberte, “Photoadaptation in marine phytoplankton: response of the photosynthetic unit,” Mar. Biol.62(2-3), 91–101 (1981). [CrossRef]
  6. L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta19(1), 1–12 (1956). [CrossRef] [PubMed]
  7. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. general treatment of suspensions of pigmented cells,” New Phytol.75(1), 11–20 (1975). [CrossRef]
  8. G. B. Mitchell and D. A. Kiefer, “Variability in pigment particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res.35(5), 665–689 (1988) (Part A). [CrossRef]
  9. N. P. Hoepffner and S. Sathyendrenath, “Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr.37(8), 1660–1679 (1992). [CrossRef]
  10. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res.100(C7), 13321–13332 (1995). [CrossRef]
  11. D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett.32(20), L20605 (2005). [CrossRef]
  12. D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005). [CrossRef]
  13. A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ.113(5), 998–1011 (2009). [CrossRef]
  14. H. Loisel, B. Lubac, D. Dessailly, L. Duforet-Gaurier, and V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express18(20), 20949–20959 (2010). [CrossRef]
  15. M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans optically different?” J. Geophys. Res.116, C00H04 (2011). [CrossRef]
  16. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semiananalytic radiance model of ocean colour,” J. Geophys. Res.93, 10,909–10,924 (1988).
  17. A. Morel, “Optical modeling of upper ocean in relation to its biogenous matter content (Case 1 waters),” J. Geophys. Res.93(C9), 10,749–10,768 (1988). [CrossRef]
  18. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt.33(30), 7070–7077 (1994). [CrossRef] [PubMed]
  19. IOCCG, “Remote sensing of ocean color in coastal, and other optically-complex waters,” in Reports of the International Ocean-Colour Coordinating Group, No. 3 Sathyendranath, S. (ed.), (IOCCG, 2000), p. 140.
  20. H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery: a review,” Lecture Notes on Coastal and Estuarine Studies, Volume 4 (Springer-Verlag, 1983).
  21. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977). [CrossRef]
  22. C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, and H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential application to algorithm development,” Remote Sens. Environ.112(12), 4186–4203 (2008). [CrossRef]
  23. S. B. Hooker, C. R. McClain, J. K. Firestone, T. L. Westphal, E. N. Yeh, and Y. Geo, “The SeaWiFS Bio-optical Archive and Storage System (SeaBASS), part 1.,” NASA Tech. Memo., 104566, Vol. 20, (Greenbelt: NASA Goddard Space Flight Center, 1994), p. 37.
  24. NASA, “SEABASS”, http://seabass.gsfc.nasa.gov/
  25. S. C. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Res.92, 14411–14415 (2005).
  26. S. C. Alvain, C. Moulin, Y. Dandonneau, H. Loisel, and F. M. Breon, “A species dependent bio-optical model of case I waters for global ocean color processing,” Deep Sea Res. Part I Oceanogr. Res. Pap.53(5), 917–925 (2006). [CrossRef]
  27. . Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view,” Global Biogeochem. Cycles22(3), GB3001 (2008), doi:. [CrossRef]
  28. R. A. Barnes, D. K. Clark, W. E. Esaias, G. S. Fargion, G. C. Feldman, and C. R. Mcclain, “Development of a consistent multi-sensor global ocean colour time series,” Int. J. Remote Sens.24(20), 4047–4064 (2003). [CrossRef]
  29. G. S. Fargion and C. R. McClain, SIMBIOS project 2003 annual report, NASA Tech. Memo., 2003–212251, (Greenbelt: NASA Goddard Space Flight Center, 2003), 202.
  30. C. R. McClain, W. Esaias, G. Feldman, R. Frouin, W. Gregg, and S. B. Hooker, “The proposal for the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Program, NASA Tech. Memo. 2002-210008, (Greenbelt: NASA Goddard Space Flight Center, 2002), 65.
  31. P. J. Werdell, “An evaluation of inherent optical property data for inclusion in the NASA bio-Optical Marine Algorithm Data set,” NASA Ocean Biology Processing Group, Science Systems and Applications, Inc. Document Version 1.1, corresponding to NOMAD Version 1.3, (2005).
  32. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005). [CrossRef]
  33. S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. time series from the Sargasso Sea.” J. of Geophys. Res.- Oceans102(C8), 18607–18625 (1997). [CrossRef]
  34. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41(15), 2705–2714 (2002). [CrossRef] [PubMed]
  35. K. Baith, R. Lindsey, G. Fu, and C. R. McClain, “SeaDAS: a data analysis system for ocean color satellite sensors,” in EOS, Trans. Am. Geophys. Union, (2000).
  36. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  37. A. Morel, “Optical properties of pure seawater,” In: Optical Aspects of Oceanography N. G. Jerlov and E. Steemann Nielsen, eds. (Academic Press Inc., 1974), pp. 1–24.
  38. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt.14(2), 417–427 (1975). [CrossRef] [PubMed]
  39. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999). [CrossRef] [PubMed]
  40. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “ Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, ” J. Geophys. Res.103(C13), 31033–31044 (1998). [CrossRef]
  41. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr.43(5), 847–858 (1998). [CrossRef]
  42. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt.41(30), 6289–6306 (2002). [CrossRef] [PubMed]
  43. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr.29(2), 350–356 (1984). [CrossRef]
  44. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998). [CrossRef]
  45. P. Legendre and L. Legendre, Numerical Ecology, 2nd English ed. (Elsevier Science BV, 1998), p. 853.
  46. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr.48(2), 843–859 (2003). [CrossRef]
  47. G. E. Fogg and G. T. Boalch, “Extracellular products in pure cultures of a brown alga,” Nature181(4611), 789–790 (1958). [CrossRef]
  48. C. S. Yentsch and C. A. Reichert, “The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae,” Bot. Mar.3, 65–74 (1961).
  49. H. Sasaki, T. Miyamura, S. Saitoh, and J. Ishizaka, “Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan,” Estuar. Coast. Shelf Sci.64(2-3), 447–458 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited