OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20951–20961

Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement

Fei Tian, Jiri Kanka, and Henry Du  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 20951-20961 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Regular and cascaded long period gratings (LPG, C-LPG) of periods ranging from 460 to 590 μm were inscribed in an endlessly single mode photonic crystal fiber (PCF) using CO2 laser for sensing measurements of helium, argon and acetylene. High index sensitivities in excess of 1700 nm/RIU were achieved in both grating schemes with a period of 460 μm. The sharp interference fringes in the transmission spectrum of C-PCF-LPG afforded not only greatly enhanced sensing resolution, but also accuracy when the phase-shift of the fringe pattern is determined through spectral processing. Comparative numerical and experimental studies indicated LP01 to LP03 mode coupling as the principal coupling step for both PCF-LPG and C-PCF-LPG with emergence of multi-mode coupling at shorter grating periods or longer resonance wavelengths.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 11, 2012
Manuscript Accepted: August 20, 2012
Published: August 29, 2012

Fei Tian, Jiri Kanka, and Henry Du, "Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement," Opt. Express 20, 20951-20961 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006). [CrossRef] [PubMed]
  2. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007). [CrossRef] [PubMed]
  3. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett.29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  4. S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express13(9), 3454–3459 (2005). [CrossRef] [PubMed]
  5. G. Xiao, A. Adnet, Z. Zhang, F. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys.118(2), 177–182 (2005). [CrossRef]
  6. J. Zhang, X. Tang, J. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express16(11), 8317–8323 (2008). [CrossRef] [PubMed]
  7. Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett.31(16), 2405–2407 (2006). [CrossRef] [PubMed]
  8. D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photon. Technol. Lett.23(11), 733–735 (2011). [CrossRef]
  9. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  10. P. St. J. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  11. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science311(5767), 1583–1586 (2006). [CrossRef] [PubMed]
  12. J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun.229(1-6), 65–69 (2004). [CrossRef]
  13. F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett.37(3), 380–382 (2012). [CrossRef] [PubMed]
  14. Y. Zhu, Z. He, J. Kanka, and H. Du, “Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem.129(1), 99–105 (2008). [CrossRef]
  15. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B25(3), 310–324 (2008). [CrossRef]
  16. Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett.92(4), 044105 (2008). [CrossRef]
  17. H.-J. Kim, O.-J. Kown, S. B. Lee, and Y.-G. Han, “Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber,” Appl. Phys. B102(1), 81–85 (2011). [CrossRef]
  18. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett.35(15), 2523–2525 (2010). [CrossRef] [PubMed]
  19. J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc.132(49), 17358–17359 (2010). [CrossRef] [PubMed]
  20. X. Yu, P. Childs, M. Zhang, Y. Liao, J. Ju, and W. Jin, “Relative humidity sensor based on cascaded long-period gratings with hydrogel coatings and Fourier demodulation,” IEEE Photon. Technol. Lett.21(24), 1828–1830 (2009). [CrossRef]
  21. P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express16(13), 9765–9780 (2008). [CrossRef] [PubMed]
  22. Y. E. Fan, T. Zhu, L. Shi, and Y. J. Rao, “Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation,” Appl. Opt.50(23), 4604–4610 (2011). [CrossRef] [PubMed]
  23. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett.29(4), 346–348 (2004). [CrossRef] [PubMed]
  24. L. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. A55(10), 1205–1209 (1965). [CrossRef]
  25. B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett.26(21), 1657–1659 (2001). [CrossRef] [PubMed]
  26. J. Jágerská, N. Le Thomas, H. Zhang, Z. Diao, and R. Houdré, “Refractive index gas sensing in a hollow photonic crystal cavity,” 2010 12th International Conference on Transparent Optical Networks, ICTON 2010, art. no. 5549037.
  27. E. R. Peck and D. J. Fisher, “Dispersion of argon,” J. Opt. Soc. Am.54(11), 1362 (1964). [CrossRef]
  28. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron.26(12), 4774–4778 (2011). [CrossRef] [PubMed]
  29. A. van Brakel, “Sensing characteristics of an optical fibre long-period grating Michelson refractometer,” DIng. thesis (Rand Afrikaans University, Johannesburg, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited