OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 20980–20991

Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers

Eric Numkam Fokoua, Francesco Poletti, and David J. Richardson  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 20980-20991 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (8772 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical method for analyzing radiation loss from surface roughness scattering in hollow-core photonic bandgap fibers (HC-PBGFs). We treat the scattering process as induced dipole radiation and combine statistical information about surface roughness, mode field distribution and fibre geometry to accurately describe the far-field scattering distribution and loss in fibers with an arbitrary cross-sectional distribution of air holes of any shape. The predicted angular scattering distribution, total scattering loss and the loss wavelength dependence are all shown to agree well with reported experimental data. Our method yields a simpler result than that obtained by more complex approaches and is to the best of our knowledge the first successful attempt to accurately describe roughness scattering in HC-PBGFs.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 15, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 14, 2012
Published: August 29, 2012

Eric Numkam Fokoua, Francesco Poletti, and David J. Richardson, "Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers," Opt. Express 20, 20980-20991 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, “Photonic crystal fibers,” Science299, 358–362 (2003). [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Nature (London)285, 1537–1539 (1999).
  3. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature (London)424, 657–659 (2003). [CrossRef]
  4. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express16, 4337–4346 (2008). [CrossRef] [PubMed]
  5. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Proceedings of Optical Fiber Communication Conference (2004), paper PDP24.
  6. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13236–244 (2005). [CrossRef] [PubMed]
  7. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991).
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  9. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express13, 7779–7793 (2005). [CrossRef] [PubMed]
  10. M.-C. Phan-Huy, J.-M. Moison, J. A. Levenson, S. Richard, G. Melin, M. Douay, and Y. Quiquempois, “Surface roughness and light scattering in a small effective area microstructured fiber,” J. Lightwave. Technol.27, 1597–1604 (2009). [CrossRef]
  11. V. Dangui, M. J. F. Digonnet, and G. S. Kino, “Modeling of the propagation loss and backscattering in air-core photonic-bandgap fibers,” J. Lightwave Technol.17, 3783–3789 (2009). [CrossRef]
  12. E. G. Rawson, “Theory Of scattering by finite dielectric needles illuminated parallel to their axes,” J. Opt. Soc. Am.62, 1284–1286 (1972). [CrossRef]
  13. E. G. Rawson, “Analysis of scattering from fiber waveguides with irregular core surfaces,” Appl. Opt.13, 2370–2377 (1974). [CrossRef] [PubMed]
  14. P. Mazumder, S. L. Logunov, and S. Raghavan, “Analysis of excess scattering in optical fibers,” J. Appl. Phys.96, 4042–4049 (2004). [CrossRef]
  15. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81, 283–293 (2005). [CrossRef]
  16. J. D. Jackson, Classical Electodynamics, 3rd ed. (John Wiley and Sons, 1998)
  17. A. W. Snyder, “Radiation losses due to variations of radius on dielectric or optical fibers,” IEEE Trans. Microwave Theory Tech.MT18(9) 608–615 (1970). [CrossRef]
  18. D. Marcuse, “Radiation losses of HE11 mode of a fiber with sinusoidally perturbed core boundary,” Appl. Opt.14, 3021–3025 (1975). [CrossRef] [PubMed]
  19. F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express139115–9124 (2005). [CrossRef] [PubMed]
  20. J. Jäckle and K. Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys. Condens. Matter7, 4351–4358 (1995). [CrossRef]
  21. T. Sarlat, A. Lelarge, E Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B54, 121–126 (2006). [CrossRef]
  22. N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, F. Poletti, and D. J. Richardson “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in Proceedings of Optical Fiber Communication Conference (2012), paper PDP5A.2.
  23. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  24. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.2, 87–124 (2011). [CrossRef]
  25. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express15, 17577–17586 (2007). [CrossRef] [PubMed]
  26. J. M. Elson and J. M. Bennett, “Relation between the angular dependence of scattering and the statistical properties of optical surfaces,” J. Opt. Soc. Am.6931–47 (1979). [CrossRef]
  27. D. Marcuse, “Mode conversion caused by surface imperfection of a dielectric slab waveguide,” Bell Syst. Tech. J.48, 3187–3215 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited