OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21019–21024

A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10−19 level

D. Yeaton-Massey and R. X. Adhikari  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21019-21024 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a bound on the relative frequency fluctuations in nonlinear second harmonic generation. A 1064nm Nd:YAG laser is used to read out the phase of a Mach-Zehnder interferometer while PPKTP, a nonlinear crystal, is placed in each arm to generate second harmonic light. By comparing the arm length difference of the Mach Zehnder as read out by the fundamental 1064 nm light, and its second harmonic at 532 nm, we can bound the excess frequency noise introduced in the harmonic generation process. We report an amplitude spectral density of frequency noise with total RMS frequency deviation of 3mHz and a minimum value of 20 μHz/Hz1/2 over 250 seconds with a measurement bandwidth of 128 Hz, corresponding to an Allan deviation of 10−19 at 20 seconds.

© 2012 OSA

OCIS Codes
(120.2920) Instrumentation, measurement, and metrology : Homodyning
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

Original Manuscript: June 29, 2012
Revised Manuscript: August 21, 2012
Manuscript Accepted: August 23, 2012
Published: August 29, 2012

D. Yeaton-Massey and R. X. Adhikari, "A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10−19 level," Opt. Express 20, 21019-21024 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962). [CrossRef]
  2. J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, “Ultraprecise measurement of optical frequency ratios,” Phys. Rev. Lett.88, 073601 (2002). [CrossRef] [PubMed]
  3. E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of four-pass I2 absorption cell in 532-nm optical frequency standard,” IEEE Trans. Instrumen. Meas.56, 673–676 (2007). [CrossRef]
  4. G. Grosche, B. Lipphardt, and H. Schnatz, “Optical frequency synthesis and measurement using fibre-based femtosecond lasers,” Euro. Phys. J. D.48, 27–33 (2008). [CrossRef]
  5. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics1, 283–287 (2007). [CrossRef]
  6. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319, 1808–1812 (2008). [CrossRef]
  7. T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, J. Shirley, and J. E. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett.98, 070801 (2007). [CrossRef] [PubMed]
  8. LIGO Scientific Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys.72, 076901 (2009).
  9. A. J. Mullavey, B. J. J. Slagmolen, J. Miller, M. Evans, P. Fritschel, D. Sigg, S. J. Waldman, D. A. Shaddock, and D. E. McClelland, “Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers,” Opt. Express20, 81–89 (2012). [CrossRef] [PubMed]
  10. K. Izumi, K. Arai, B. Barr, J. Betzwieser, A. Brooks, K. Dahl, S. Doravari, J. C. Driggers, W. Z. Korth, H. Miao, J. Rollins, S. Vass, D. Yeaton-Massey, and R. X. Adhikari, “Multi-wavelength cavity metrology,” arXiv:1205.1257 (2012)
  11. F. Khalili, S. Danilishin, H. Müller-Ebhardt, H. Miao, Y. Chen, and C. Zhao, “Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors,” Phys. Rev. D83, 062003 (2011). [CrossRef]
  12. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and J. R. L. Savage, “Spatial and temporal filtering of a 10-w nd:yag laser with a fabry–perot ring-cavity premode cleaner,” Opt. Lett.23, 1704– 1706 (1998). [CrossRef]
  13. V. Leonhardt and J. B. Camp, “Space interferometry application of laser frequency stabilization with molecular iodine,” Appl. Opt.45, 4142–4146 (2006). [CrossRef] [PubMed]
  14. Y. Levin, “Fluctuation–dissipation theorem for thermo-refractive noise,” Phys. Lett. A372, 1941–1944 (2007). [CrossRef]
  15. D. Heinert, A. G. Gurkovsky, R. Nawrodt, S. P. Vyatchanin, and K. Yamamoto, “Thermorefractive noise of finite-sized cylindrical test masses,” Phys. Rev. D84, 062001 (2011). [CrossRef]
  16. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical Frequency Synthesis and Comparison with Uncertainty at the 10−19 Level,” Science303, 1843–1845 (2004). [CrossRef] [PubMed]
  17. L. Robertsson, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM,” Metrologia38 (2001).
  18. J. E. Stalnaker, S. A. Diddams, T. M. Fortier, K. Kim, L. Hollberg, J. C. Bergquist, W. M. Itano, M. J. Delany, L. Lorini, W. H. Oskay, T. P. Heavner, S. R. Jefferts, F. Levi, T. E. Parker, and J. Shirley, “Optical-to-microwave frequency comparison with fractional uncertainty of 10−15,” Appl. Phys. B: Lasers Opt.89, 167–176 (2007). [CrossRef]
  19. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University Press, 2008). [CrossRef]
  20. I. R. C. Committee, “Characterization of Frequency and Phase Noise,” Report (1986).
  21. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B: Lasers Opt.97, 541–551 (2009). 10.1007/s00340-009-3653-2. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited