OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21044–21052

Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm

Mingchen Chen, Akira Shirakawa, Xinyan Fan, Ken-ichi Ueda, Christina B. Olausson, Jens K. Lyngsø, and Jes Broeng  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21044-21052 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



1178 nm single-frequency amplification by Yb doped photonic bandgap fiber has been demonstrated. 24.6 W output power and 12 dB gain were obtained without parasitic lasing and also stimulated Brillouin scattering. 1.8 dB suppression of Brillouin gain by an acoustic antiguiding effect has been found in the Yb doped photonic bandgap fiber.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 10, 2012
Revised Manuscript: August 21, 2012
Manuscript Accepted: August 21, 2012
Published: August 29, 2012

Mingchen Chen, Akira Shirakawa, Xinyan Fan, Ken-ichi Ueda, Christina B. Olausson, Jens K. Lyngsø, and Jes Broeng, "Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm," Opt. Express 20, 21044-21052 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett.31(10), 1388–1390 (2006). [CrossRef] [PubMed]
  2. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92(6), 061113 (2008). [CrossRef]
  3. C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express16(18), 13657–13662 (2008). [CrossRef] [PubMed]
  4. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009). [CrossRef] [PubMed]
  5. R. Goto, E. C. Mägi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett.45(17), 877–878 (2009). [CrossRef]
  6. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express18(16), 16345–16352 (2010). [CrossRef] [PubMed]
  7. A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010). [CrossRef]
  8. X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express20(13), 14471–14476 (2012). [CrossRef] [PubMed]
  9. Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express17(21), 19021–19026 (2009). [CrossRef] [PubMed]
  10. I. A. Bufetov, M. M. Bubnov, Y. V. Larionov, O. I. Medvedkov, S. A. Vasiliev, M. A. Melkoumov, A. A. Rybaltovsky, S. L. Semjonov, E. M. Dianov, A. N. Gur’yanov, V. F. Khopin, F. Durr, H. G. Limberger, R.-P. Salathe, and M. Zeller, “Highly Efficient One- and Two- Cascade Raman Laser Based on Phosphosilicate fibers,” Laser Phys.13, 234–239 (2003).
  11. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B1(4), 652–657 (1984). [CrossRef]
  12. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express16(15), 10927–10932 (2008). [CrossRef] [PubMed]
  13. C. Vergien, I. Dajani, and C. Robin, “18 W single-stage single-frequency acoustically tailored Raman fiber amplifier,” Opt. Lett.37(10), 1766–1768 (2012). [CrossRef] [PubMed]
  14. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989). [CrossRef]
  15. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol.19(11), 1691–1697 (2001). [CrossRef]
  16. T. Horiguchi, M. Tateda, N. Shibata, and Y. Azuma, “Brillouin gain variation due to a polarization-state change of the pump or Stokes fields in standard single-mode fibers,” Opt. Lett.14(6), 329–331 (1989). [CrossRef] [PubMed]
  17. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005). [CrossRef] [PubMed]
  18. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett.34(7), 1018–1020 (2009). [CrossRef] [PubMed]
  19. M. Oskar van Deventer and A. J. Boot, “Polarization Properties of Stimulated Brillouin Scattering in Single-Mode Fibers,” J. Lightwave Technol.12(4), 585–590 (1994). [CrossRef]
  20. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  21. P. D. Dragic, “Brillouin spectroscopy of Nd–Ge co-doped silica fibers,” J. Non-Cryst. Solids355(7), 403–413 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited