OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21101–21106

Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber

Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21101-21106 (2012)
http://dx.doi.org/10.1364/OE.20.021101


View Full Text Article

Enhanced HTML    Acrobat PDF (1033 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the dependence of Brillouin gain spectra on large strain of > 20% in a perfluorinated graded-index polymer optical fiber, and prove, for the first time, that the dependence of Brillouin frequency shift (BFS) is highly non-monotonic. We predict that temperature sensors even with zero strain sensitivity can be implemented by use of this non-monotonic nature. Meanwhile, the Stokes power decreases rapidly when the applied strain is > ~10%. This behavior seems to originate from the propagation loss dependence on large strain. By exploiting the Stokes power dependence, we can probably solve the problem of how to identify the applied strain, when the identification is difficult only by BFS because of its non-monotonic nature.

© 2012 OSA

OCIS Codes
(160.5470) Materials : Polymers
(290.5830) Scattering : Scattering, Brillouin
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: June 27, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 26, 2012
Published: August 30, 2012

Citation
Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura, "Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber," Opt. Express 20, 21101-21106 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989). [CrossRef]
  2. T. Kurashima, T. Horiguchi, H. Izumita, and M. Tateda, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.E76-B, 382–390 (1993).
  3. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett.21(17), 1402–1404 (1996). [CrossRef] [PubMed]
  4. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – Proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).
  5. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008). [CrossRef] [PubMed]
  6. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2006).
  7. K. Nakamura, I. R. Husdi, and S. Ueha, “A distributed strain sensor with the memory effect based on the POF OTDR,” Proc. SPIE5855, 807–810 (2005). [CrossRef]
  8. N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Measurement of acoustic velocity in poly(methyl methacrylate)-based polymer optical fiber for Brillouin frequency shift estimation,” Appl. Phys. Express4(10), 102501 (2011), doi:. [CrossRef]
  9. N. Hayashi, Y. Mizuno, D. Koyama, and K. Nakamura, “Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement,” Appl. Phys. Express5(3), 032502 (2012), doi:. [CrossRef]
  10. Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett.97(2), 021103 (2010), doi:. [CrossRef]
  11. Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett.36(12), 2378–2380 (2011). [CrossRef] [PubMed]
  12. Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett.23(24), 1863–1865 (2011). [CrossRef]
  13. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett.35(23), 3985–3987 (2010). [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  15. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett.1(5), 107–108 (1989). [CrossRef]
  16. Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry,” Opt. Commun.283(11), 2438–2441 (2010). [CrossRef]
  17. L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett.29(13), 1485–1487 (2004). [CrossRef] [PubMed]
  18. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]
  19. O. Frank and J. Lehmann, “Determination of various deformation processes in impact-modified PMMA at strain rates up to 105%/min,” Colloid Polym. Sci.264(6), 473–481 (1986). [CrossRef]
  20. R. Hill, The Mathematical Theory of Plasticity (Oxford U. Press, 1950).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited