OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21107–21113

Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles

Vinicius Tribuzi, Daniel Souza Corrêa, Waldir Avansi, Jr., Caue Ribeiro, Elson Longo, and Cleber Renato Mendonça  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21107-21113 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes.

© 2012 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: June 1, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: August 27, 2012
Published: August 30, 2012

Vinicius Tribuzi, Daniel Souza Corrêa, Waldir Avansi, Caue Ribeiro, Elson Longo, and Cleber Renato Mendonça, "Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles," Opt. Express 20, 21107-21113 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999). [CrossRef]
  2. A. Alu and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A, Pure Appl. Opt.10(9), 093002 (2008). [CrossRef]
  3. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett.100(6), 063120 (2012). [CrossRef]
  7. E. Yilmaz and S. Suzer, “Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity,” Appl. Surf. Sci.256(22), 6630–6633 (2010). [CrossRef]
  8. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007). [CrossRef]
  9. M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004). [CrossRef] [PubMed]
  10. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4494–4498 (2008). [CrossRef]
  11. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010). [CrossRef] [PubMed]
  12. H. B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003). [CrossRef]
  13. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001). [CrossRef]
  14. M. P. Joshi, H. E. Pudavar, J. Swiatkiewicz, P. N. Prasad, and B. A. Reianhardt, “Three-dimensional optical circuitry using two-photon-assisted polymerization,” Appl. Phys. Lett.74(2), 170–172 (1999). [CrossRef]
  15. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  16. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  17. C. R. Mendonca, D. S. Correa, F. Marlow, T. Voss, P. Tayalia, and E. Mazur, “Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer,” Appl. Phys. Lett.95(11), 113309 (2009). [CrossRef]
  18. C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys.102(1), 013109 (2007). [CrossRef]
  19. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011). [CrossRef] [PubMed]
  20. L. Li, E. Gershgoren, G. Kumi, W.-Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-Performance Microring Resonators Fabricated with Multiphoton Absorption Polymerization,” Adv. Mater. (Deerfield Beach Fla.)20(19), 3668–3671 (2008). [CrossRef]
  21. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett.88(8), 081107 (2006). [CrossRef]
  22. R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc.128(6), 1796–1797 (2006). [CrossRef] [PubMed]
  23. C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, “Direct laser patterning of conductive wires on three-dimensional polymeric microstructures,” Chem. Mater.18(8), 2038–2042 (2006). [CrossRef]
  24. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011). [CrossRef] [PubMed]
  25. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films453-454, 518–521 (2004). [CrossRef]
  26. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1428 (2003). [CrossRef]
  27. D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum. Electron.18, 176–186 (2012).
  28. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys.95(11), 6072–6076 (2004). [CrossRef]
  29. C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur, “Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L,” Appl. Phys., A Mater. Sci. Process.90(4), 633–636 (2008). [CrossRef]
  30. H. He, C. Xie, and J. Ren, “Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging,” Anal. Chem.80(15), 5951–5957 (2008). [CrossRef] [PubMed]
  31. D. Philip, “Synthesis and spectroscopic characterization of gold nanoparticles,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.71(1), 80–85 (2008). [CrossRef]
  32. A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, and N. Bityurin, “UV-initiated growth of gold nanoparticles in PMMA matrix,” Appl. Surf. Sci.248(1-4), 181–184 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited