OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21114–21118

Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose

Hui Hu, Fei Lu, Xue Lin Wang, Feng Chen, and Ke Ming Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21114-21118 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-mode optical waveguides in LiNbO3 substrate with loss as low as 0.17dB/cm were fabricated by a multi-energy low-dose ion implantation technology and cumulative annealing treatment. A waveguide Y-Branch splitter was demonstrated. Index profile in waveguide is described based on the ion implantation-induced damage profile, and propagation property in waveguide is simulated. Simulation results show a good consistence with the measured ones.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: July 12, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: August 27, 2012
Published: August 30, 2012

Hui Hu, Fei Lu, Xue Lin Wang, Feng Chen, and Ke Ming Wang, "Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose," Opt. Express 20, 21114-21118 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Th. Kersten and H. Boroffka, “A strip-waveguide light-distribution structure made by ion implantation into fused quartz,” Opt. Quantum Electron.8(3), 263–266 (1976). [CrossRef]
  2. G. L. Destefanis, P. D. Townsend, and J. Gailliard, “Optical waveguides in LiNbO3 formed by ion implantation of helium,” Appl. Phys. Lett.32(5), 293–294 (1978). [CrossRef]
  3. T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett.9(1), 11–14 (1988). [CrossRef]
  4. 4F. Lu, M.-Q. Meng, K.-M. Wang, X.-D. Liu, H.-C. Chen, and D.-Y. Shen, “Planar optical waveguide in Cu-doped potassium sodium strontium barium niobate crystal Formed by mega-electron-volt He-ion implantation,” Opt. Lett.22(3), 163–165 (1997). [CrossRef] [PubMed]
  5. P. D. Townsend and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  6. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  7. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt.40(22), 3759–3761 (2001). [CrossRef] [PubMed]
  8. X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, X. Liu, Z. Qin, and Y. Ma, “Optical confinement achieved in ZnO crystal by O+ ions implantation: analysis of waveguide formation and properties,” Opt. Express19(8), 7139–7146 (2011). [CrossRef] [PubMed]
  9. G. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express11(11), 1291–1296 (2003). [CrossRef] [PubMed]
  10. L. Mutter, M. Jazbinsek, C. Herzog, and P. Günter, “Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals,” Opt. Express16(2), 731–739 (2008). [CrossRef] [PubMed]
  11. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys.92(11), 6477–6483 (2002). [CrossRef]
  12. X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low dose oxygen ion implantation,” Appl. Phys. Lett.86(4), 041103–041104 (2005). [CrossRef]
  13. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985). [CrossRef]
  14. J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys.108(3), 033105–033109 (2010). [CrossRef]
  15. A. Majkić, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express16(12), 8769–8779 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited