OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21145–21159

Three-dimensional clustered speckle fields: theory, simulations and experimental verification

A. Lencina, P. Solano, J. P. Staforelli, J. M. Brito, M. Tebaldi, and N. Bolognini  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21145-21159 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Clustered speckle patterns are a particular type of speckles that appear when a coherently illuminated diffuser is imaged through a multiple aperture pupil mask attached to a lens. The cluster formation is the result of the complex speckle modulations of the multiple interferences produced by the apertures. In this paper, a three-dimensional analytical approach to simulate cluster speckles everywhere after the lens is presented. This approach has the possibility of including multiple aperture masks at the lens and at the diffuser, in contrast to previous works which were also limited to the description of the patterns only at the image plane. This model contributes to the development of tailor made speckle patterns that can be used in diverse optical applications, including those lying in the focus region. The approach is validated under different conditions by comparing experimental results with simulations on a statistical basis. Some aspects of possible uses of these clusters are briefly revised, such as optical trapping, manipulation and metrology.

© 2012 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(050.1220) Diffraction and gratings : Apertures
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

ToC Category:
Coherence and Statistical Optics

Original Manuscript: June 13, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: July 30, 2012
Published: August 31, 2012

A. Lencina, P. Solano, J. P. Staforelli, J. M. Brito, M. Tebaldi, and N. Bolognini, "Three-dimensional clustered speckle fields: theory, simulations and experimental verification," Opt. Express 20, 21145-21159 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, 1975).
  2. M. Françon, Laser Speckle and Applications in Optics (Academic Press, 1979).
  3. J. W. Goodman, Speckle Phenomena in Optics: theory and applications (Roberts&Company, 2007).
  4. G. Zhang, Z. Wu, and Y. Li, “Speckle size of light scattered from 3D rough objects,” Opt. Express20, 4726–4737 (2012). [CrossRef] [PubMed]
  5. D. Li, D. P. Kelly, and J. T. Sheridan, “Three-dimensional static speckle fields. Part I. Theory and numerical investigation,” J. Opt. Soc. Am. A28, 1896–1903 (2011). [CrossRef]
  6. M. Tebaldi, A. Lencina, and N. Bolognini, “Analysis and applications of the speckle patterns registered in a photorefractive BTO crystal,” Opt. Commun.202, 257–270 (2002). [CrossRef]
  7. A. Lencina, P. Vaveliuk, M. Tebaldi, and N. Bolognini, “Modulated speckle simulations based on the random-walk model,” Opt. Lett.28, 1748–1750 (2003). [CrossRef] [PubMed]
  8. A. Lencina, M. Tebaldi, P. Vaveliuk, and N. Bolognini, “Dynamic behaviour of speckle cluster formation,” Waves in Random and Complex Media17, 29–42 (2007). [CrossRef]
  9. K. Uno, J. Uozumi, and T. Asakura, “Speckle clustering in diffraction patterns of random objects under ring-slit illumination,” Opt. Commun.114, 203–210 (1995). [CrossRef]
  10. F. Mosso, M. Tebaldi, A. Lencina, and N. Bolognini, “Cluster speckle structures through multiple apertures forming a closed curve,” Opt. Commun.283, 1285–1290 (2010). [CrossRef]
  11. J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun.283, 4722–4726 (2010). [CrossRef]
  12. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express18, 3137–3142 (2010). [CrossRef] [PubMed]
  13. V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Speckle field as a multiple particle trap,” Proc. SPIE7715, 77150K (2010). [CrossRef]
  14. T.M. Grzegorczyk, B.A. Kemp, and J.A. Kong, Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field, J. Opt. Soc. Am. A.23, 2324–2330 (2006). [CrossRef]
  15. D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle Field,” Eur. Phys. J. D7, 373–377 (1999). [CrossRef]
  16. G. Grynberg, P. Horak, and C. Mennerat-Robilliard, “Spatial diffusion of atoms cooled in a speckle field,” Europhys. Lett.49, 424–430 (2000). [CrossRef]
  17. R. C. Kuhn, O. Sigwarth, C. Miniatura, D. Delande, and C. A. Müller, “Coherent matter wave transport in speckle potentials,” New J. Phy.9, 1–39 (2007).
  18. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, “Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond,” Adv. Phys.56, 243–379 (2007). [CrossRef]
  19. M. Robert-de-Saint-Vincent, J. P. Brantut, B. Allard, T. Plisson, L. Pezzé, L. Sanchez-Palencia, A. Aspect, T. Bourdel, and P. Bouyer, “Anisotropic 2D Diffusive Expansion of Ultracold Atoms in a Disordered Potential,” Phys. Rev. Lett.104, 220602 (2010). [CrossRef] [PubMed]
  20. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), Ch 3.
  21. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, (Dover Publications, 1965) p. 297.
  22. I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. TheoryIT-8, 194–195 (1962). [CrossRef]
  23. L. Leushacke and M. Kirchner, “Three-dimensional correlation coefficient of speckle intensity for rectangular and circular apertures,” J. Opt. Soc. Am. A7, 827–832 (1990). [CrossRef]
  24. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  25. M. Tebaldi, L. Ángel Toro, M. Trivi, and N. Bolognini, “Optical processing by fringed speckles registered in a BSO crystal,” Opt. Eng.39, 3232–3238 (2000). [CrossRef]
  26. J. N. Butters and J. A. Leendertz, “A double exposure technique for speckle pattern interferometry,” J. Phys. E4, 277–279 (1971). [CrossRef]
  27. R. P. Khetan and F. P. Chiang, “Strain analysis by one-beam laser speckle interferometry. 1: Single aperture method,” Appl. Opt.15, 2205–2215 (1976). [CrossRef] [PubMed]
  28. F.P. Chian and R.P. Khetan, “Strain analysis by one-beam laser speckle interferometry. 2: Multiaperture method,” Appl. Opt.18, 2175–2186 (1979). [CrossRef]
  29. M. Tebaldi, L. Ángel, M. Trivi, and N. Bolognini, “New multiple aperture arrangements for speckle photography,” Opt. Commun.182, 95–105 (2000). [CrossRef]
  30. L. Ángel, M. Tebaldi, and N. Bolognini, “Multiple rotation assessment through isothetic fringes in speckle photography,” Appl. Opt.46, 2676–2682 (2007). [CrossRef] [PubMed]
  31. W. Wang, T. Yokozeki, R. Ishijima, A. Wada, Y. Miyamoto, and M. Takeda, “Optical vortex metrology for nanometric speckle displacement measurement,” Opt. Express14, 120–127 (2006). [CrossRef] [PubMed]
  32. G. H. Sendra, H. J. Rabal, R. Arizaga, and M. Trivi, “Vortex analysis in dynamic speckle images,” J. Opt. Soc. Am. A26, 2634–2639(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited