OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21173–21180

High thermal stability of high indium content InGaN films grown by pulsed laser deposition

Kun-Ching Shen, Tzu-Yu Wang, Dong-Sing Wuu, and Ray-Hua Horng  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21173-21180 (2012)
http://dx.doi.org/10.1364/OE.20.021173


View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thermal stability on the structural and optical properties of high indium content InGaN films grown using pulsed laser deposition (PLD) was investigated through long-duration and high-temperature annealing. X-ray diffraction and cathode- luminescence measurements of the 33% indium InGaN revealed no differences in the line-shape and peak position even after annealing at 800°C for 95 min; similar structural stability was found for the 60% samples after annealing for 75 min. The higher thermal stability is attributed to nanoscale InN domains with different orientations create mixed-polarity InGaN/InN interfaces, resulting in higher activation energies at interfaces and increasing the thermal stability of the material. Furthermore, the InGaN films were subjected to metalorganic chemical vapor deposition treatment to regrow a GaN layer; results are promising for the development of high thermal stability InGaN films using the PLD technique.

© 2012 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.6000) Materials : Semiconductor materials

ToC Category:
Materials

History
Original Manuscript: July 6, 2012
Revised Manuscript: August 26, 2012
Manuscript Accepted: August 29, 2012
Published: August 31, 2012

Citation
Kun-Ching Shen, Tzu-Yu Wang, Dong-Sing Wuu, and Ray-Hua Horng, "High thermal stability of high indium content InGaN films grown by pulsed laser deposition," Opt. Express 20, 21173-21180 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997), pp. 201–260.
  2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741–4743 (2002). [CrossRef]
  3. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  4. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007). [CrossRef]
  5. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98(2), 021102 (2011). [CrossRef]
  6. C. C. Chuo, M. N. Chang, F. M. Pan, C. M. Lee, and J. I. Chyi, “Effect of composition inhomogeneity on the photoluminescence of InGaN/GaN multiple quantum wells upon thermal annealing,” Appl. Phys. Lett.80(7), 1138–1140 (2002). [CrossRef]
  7. C. C. Chuo, C. M. Lee, T. E. Nee, and J. I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett.76(26), 3902–3904 (2000). [CrossRef]
  8. E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, and N. T. Pelekanos, “InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci.203(1), 102–105 (2006). [CrossRef]
  9. B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett.93(18), 182107 (2008). [CrossRef]
  10. Y. Guo, X. L. Liu, H. P. Song, A. L. Yang, X. Q. Xu, G. L. Zheng, H. Y. Wei, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “A study of indium incorporation in In-rich InGaN grown by MOVPE,” Appl. Surf. Sci.256(10), 3352–3356 (2010). [CrossRef]
  11. K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012). [CrossRef] [PubMed]
  12. R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. Asif Khan, and J. W. Yang, “Growth of epitaxial GaN films by pulsed laser deposition,” Appl. Phys. Lett.71(1), 102–104 (1997). [CrossRef]
  13. P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, and B. K. Meyer, “Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma,” Solid-State Electron.47(3), 559–563 (2003). [CrossRef]
  14. N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett.72(1), 40–42 (1998). [CrossRef]
  15. T. Fujii, A. Kobayashi, K. Shimomoto, J. Ohta, M. Oshima, and H. Fujioka, “Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition,” Appl. Phys. Express3(2), 021003 (2010). [CrossRef]
  16. H. Murakami, H. C. Cho, Y. Kumagai, and A. Koukitu, “Selective growth of InN on patterned GaAs(111)B substrate – influence of InN decomposition at the interface,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7–8), 2019–2021 (2010). [CrossRef]
  17. L. T. Romano, B. S. Krusor, and R. J. Molnar, “Structure of GaN films grown by hydride vapor phase epitaxy,” Appl. Phys. Lett.71(16), 2283–2285 (1997). [CrossRef]
  18. H. K. Cho, J. Y. Lee, C. S. Kim, G. M. Yang, N. Sharma, and C. Humphreys, “Microstructural characterization of InGaN/GaN multiple quantum wells with high indium composition,” J. Cryst. Growth231(4), 466–473 (2001). [CrossRef]
  19. C. Stampfl and C. G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN,” Phys. Rev. B57(24), R15052–R15055 (1998). [CrossRef]
  20. V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002). [CrossRef]
  21. S. W. Feng, E. C. Lin, T. Y. Tang, Y. C. Cheng, H. C. Wang, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Thermal annealing effects on an InGaN film with an average indium mole fraction of 0.31,” Appl. Phys. Lett.83(19), 3906–3908 (2003). [CrossRef]
  22. M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of highdensity nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited