OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21181–21186

50-Gb/s silicon quadrature phase-shift keying modulator

Po Dong, Long Chen, Chongjin Xie, Lawrence L. Buhl, and Young-Kai Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21181-21186 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first successful demonstration of quadrature phase-shift keying (QPSK) modulation using two nested silicon Mach-Zehnder modulators. 50-Gb/s QPSK signal is generated with only 2.7-dB optical signal-to-noise ratio penalties from the theoretical limit at a bit-error ratio of 10−3. This result validates that silicon photonics could be a viable and powerful platform of photonic integrated circuits in coherent optical communications.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(130.0250) Integrated optics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:

Original Manuscript: July 5, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: August 29, 2012
Published: August 31, 2012

Po Dong, Long Chen, Chongjin Xie, Lawrence L. Buhl, and Young-Kai Chen, "50-Gb/s silicon quadrature phase-shift keying modulator," Opt. Express 20, 21181-21186 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006). [CrossRef]
  2. T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications (Kluwer, 1998).
  3. R. A. Soref, “The past, present and future of silicon photonics,” IEEE. J. Sel. Top. Quant. Electron.12(6), 1678–1687 (2006). [CrossRef]
  4. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic–photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 6–15 (2006). [CrossRef]
  5. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag.7(3), 56–68 (2006). [CrossRef]
  6. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009). [CrossRef]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  8. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  10. http://www.ofcnfoec.org/conference_program/2009/images/09-DAndrea.pdf .
  11. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  12. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  13. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  14. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  15. L. Chen, C. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” in 37th European Conference and Exposition on Optical Communications, (Optical Society of America, 2011), paper Th.13.A.1.
  16. D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Mashanovich, and G. Reed, “50Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett.24, 234–236 (2012).
  17. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012). [CrossRef] [PubMed]
  18. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  19. L. Zhang, J.-Y. Yang, Y. Li, R. G. Beausoleil, and A. E. Willner, “Silicon microring-resonator-based modulation and demodulation of DQPSK Signals,” Optical Fiber Communication Conference (OFC 2008), (Optical Society of America, 2008), paper OWL5.
  20. W. D. Sacher and J. K. S. Poon, “Microring quadrature modulators,” Opt. Lett.34(24), 3878–3880 (2009). [CrossRef] [PubMed]
  21. R. A. Integlia, L. Yin, D. Ding, D. Z. Pan, D. M. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19(16), 14892–14902 (2011). [CrossRef] [PubMed]
  22. P. Dong, C. Xie, L. Chen, N. K. Fontaine, and Y.-K. Chen, “Experimental demonstration of microring quadrature phase-shift keying modulators,” Opt. Lett.37(7), 1178–1180 (2012). [CrossRef] [PubMed]
  23. K. Ogawa, K. Goi, H. Kusaka, K. Oda, T. Liow, X. Tu, G. Lo, and D. Kwong, “20-Gbps silicon photonic waveguide nested Mach-Zehnder QPSK modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper JTh2A.20.
  24. K. Prosyk, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Millett, and K. Velthaus, “Tunable InP-based optical IQ modulator for 160 Gb/s,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Th.13.A.5.
  25. http://www.gigoptix.com .
  26. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983). [CrossRef]
  27. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010). [CrossRef]
  28. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  29. L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36(4), 469–471 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited