OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21187–21195

Voigt Airy surface magneto plasmons

Bin Hu, Qi Jie Wang, and Ying Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21187-21195 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1071 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a basic theory on Airy surface magneto plasmons (SMPs) at the interface between a dielectric layer and a metal layer (or a doped semiconductor layer) under an external static magnetic field in the Voigt configuration. It is shown that, in the paraxial approximation, the Airy SMPs can propagate along the surface without violating the nondiffracting characteristics, while the ballistic trajectory of the Airy SMPs can be tuned by the applied magnetic field. In addition, the self-deflection-tuning property of the Airy SMPs depends on the direction of the external magnetic field applied, owing to the nonreciprocal effect.

© 2012 OSA

OCIS Codes
(230.3810) Optical devices : Magneto-optic systems
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: July 9, 2012
Revised Manuscript: August 19, 2012
Manuscript Accepted: August 19, 2012
Published: August 31, 2012

Bin Hu, Qi Jie Wang, and Ying Zhang, "Voigt Airy surface magneto plasmons," Opt. Express 20, 21187-21195 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47(3), 264–267 (1979). [CrossRef]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99(21), 213901 (2007). [CrossRef] [PubMed]
  3. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32(8), 979–981 (2007). [CrossRef] [PubMed]
  4. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009). [CrossRef]
  5. A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express19(25), 25570–25582 (2011). [CrossRef] [PubMed]
  6. G. Zhou, R. Chen, and X. Chu, “Propagation of Airy beams in uniaxial crystals orthogonal to the optical axis,” Opt. Express20(3), 2196–2205 (2012). [CrossRef] [PubMed]
  7. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008). [CrossRef]
  8. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010). [CrossRef] [PubMed]
  9. C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, and J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express19(20), 19572–19581 (2011). [CrossRef] [PubMed]
  10. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett.25(20), 1493–1495 (2000). [CrossRef] [PubMed]
  11. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett.35(12), 2082–2084 (2010). [CrossRef] [PubMed]
  12. W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Plasmonic Airy beam manipulation in linear optical potentials,” Opt. Lett.36(7), 1164–1166 (2011). [CrossRef] [PubMed]
  13. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011). [CrossRef] [PubMed]
  14. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett.107(12), 126804 (2011). [CrossRef] [PubMed]
  15. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett.28(22), 1455–1458 (1972). [CrossRef]
  16. M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep.41(1-8), 1–416 (2001). [CrossRef]
  17. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008). [CrossRef] [PubMed]
  18. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012). [CrossRef] [PubMed]
  19. E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970). [CrossRef]
  20. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett.33(3), 207–209 (2008). [CrossRef] [PubMed]
  21. I. L. Tyler, B. Fischer, and R. J. Bell, “On the observation of surface magnetoplasmons,” Opt. Commun.8(2), 145–146 (1973). [CrossRef]
  22. L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B30(6), 3277–3282 (1984). [CrossRef]
  23. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express13(3), 847–859 (2005). [CrossRef] [PubMed]
  24. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B Condens. Matter36(11), 5960–5967 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited