OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21235–21246

Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides

Christopher G. Poulton, Ravi Pant, Adam Byrnes, Shanhui Fan, M. J. Steel, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21235-21246 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2522 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme for on-chip isolation in chalcogenide (As2S3) rib waveguides, in which Stimulated Brillouin Scattering is used to induce non-reciprocal mode conversion within a multi-moded waveguide. The design exploits the idea that a chalcogenide rib buried in a silica matrix acts as waveguide for both light and sound, and can also be designed to be multi-moded for both optical and acoustic waves. The enhanced opto-acoustic coupling allows significant isolation (> 20 dB) within a chip-scale (cm-long) device (< 10 cm). We also show that the bandwidth of this device can be dramatically increased by tuning the dispersion of the waveguide to match the group velocity between optical modes: we find that 20 dB isolation can be extended over a bandwidth of 25 nm.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

Original Manuscript: July 20, 2012
Revised Manuscript: August 21, 2012
Manuscript Accepted: August 21, 2012
Published: August 31, 2012

Christopher G. Poulton, Ravi Pant, Adam Byrnes, Shanhui Fan, M. J. Steel, and Benjamin J. Eggleton, "Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides," Opt. Express 20, 21235-21246 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals.” Nat. Mater.3, 211–219 (2004). [CrossRef]
  2. X. Huang and S. Fan, “Complete all-optical silica fiber isolator via Stimulated Brillouin Scattering,” J. Lightwave Technol.29, 2267–2275 (2011). [CrossRef]
  3. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009). [CrossRef]
  4. Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010). [CrossRef]
  5. L. J. Aplet and J. W. Carson, “A Faraday effect optical isolator,” Appl. Optics3, 544–545 (1964). [CrossRef]
  6. M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron.8, 1300–1306 (2002). [CrossRef]
  7. Y. Shoji, T. Mizumoto, H. Yokoi, I. Hsieh, and R. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett.92, 071117 (2008). [CrossRef]
  8. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19, 11740–11745 (2011). [CrossRef] [PubMed]
  9. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B16, 267–269 (1999). [CrossRef]
  10. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode.” Science335, 447–450 (2012). [CrossRef]
  11. M. Fujii, A. Maitra, C. Poulton, J. Leuthold, and W. Freude, “Non-reciprocal transmission and Schmitt trigger operation in strongly modulated asymmetric WBGs,” Opt. Express14, 12782–12793 (2006). [CrossRef] [PubMed]
  12. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109, 033901 (2012). [CrossRef] [PubMed]
  13. R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, 2003).
  14. M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5, 549–553 (2011). [CrossRef]
  15. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  16. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering.” Opt. Express19, 8285–8290 (2011). [CrossRef] [PubMed]
  17. R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation,” Opt. Lett.36, 3687–3689 (2011). [CrossRef] [PubMed]
  18. J. D. Love and N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol.30, 304–309 (2012). [CrossRef]
  19. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995). [CrossRef]
  20. B. A. Auld, Acoustic Fields and Waves in Solids, Volume II, 1st ed. (John Wiley & Sons, 1973).
  21. P. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength Limit,” Phys. Rev. X2, 1–15 (2012). [CrossRef]
  22. K. Finsterbusch, N. J. Baker, V. G. Ta’eed, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Higher-order mode grating devices in As2S3 chalcogenide glass rib waveguides,” J. Opt. Soc. Am. B24, 1283–1290 (2007). [CrossRef]
  23. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-y. Choi, S. Madden, B. Luther-davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012). [CrossRef] [PubMed]
  24. J. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J.48, 2133–2160 (1969).
  25. N. Uchida and N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE61, 1073–1092 (1973). [CrossRef]
  26. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett.27, 698–700 (2002). [CrossRef]
  27. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett.34, 3671–3673 (2009). [CrossRef] [PubMed]
  28. M. Shokooh-Saremi, V. G. Ta, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B23, 1323–1331 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited