OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21247–21263

Efficient holoscopy image reconstruction

Dierck Hillmann, Gesa Franke, Christian Lührs, Peter Koch, and Gereon Hüttmann  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21247-21263 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1758 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holoscopy is a tomographic imaging technique that combines digital holography and Fourier-domain optical coherence tomography (OCT) to gain tomograms with diffraction limited resolution and uniform sensitivity over several Rayleigh lengths. The lateral image information is calculated from the spatial interference pattern formed by light scattered from the sample and a reference beam. The depth information is obtained from the spectral dependence of the recorded digital holograms. Numerous digital holograms are acquired at different wavelengths and then reconstructed for a common plane in the sample. Afterwards standard Fourier-domain OCT signal processing achieves depth discrimination. Here we describe and demonstrate an optimized data reconstruction algorithm for holoscopy which is related to the inverse scattering reconstruction of wavelength-scanned full-field optical coherence tomography data. Instead of calculating a regularized pseudoinverse of the forward operator, the recorded optical fields are propagated back into the sample volume. In one processing step the high frequency components of the scattering potential are reconstructed on a non-equidistant grid in three-dimensional spatial frequency space. A Fourier transform yields an OCT equivalent image of the object structure. In contrast to the original holoscopy reconstruction with backpropagation and Fourier transform with respect to the wavenumber, the required processing time does neither depend on the confocal parameter nor on the depth of the volume. For an imaging NA of 0.14, the processing time was decreased by a factor of 15, at higher NA the gain in reconstruction speed may reach two orders of magnitude.

© 2012 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

Original Manuscript: May 11, 2012
Revised Manuscript: July 13, 2012
Manuscript Accepted: July 16, 2012
Published: September 4, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Dierck Hillmann, Gesa Franke, Christian Lührs, Peter Koch, and Gereon Hüttmann, "Efficient holoscopy image reconstruction," Opt. Express 20, 21247-21263 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett.36, 2390–2392 (2011). [CrossRef] [PubMed]
  2. D. Hillmann, C. Lhrs, T. Bonin, P. Koch, A. Vogel, and G. Httmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE8091, 80911H (2011). [CrossRef]
  3. J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE7139, 713908–713907 (2008). [CrossRef]
  4. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19, 12141–12155 (2011). [CrossRef] [PubMed]
  5. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett.33, 1696–1698 (2008). [CrossRef] [PubMed]
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31, 2450–2452 (2006). [CrossRef] [PubMed]
  7. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32, 2375–2377 (2007). [CrossRef] [PubMed]
  8. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy:inverse scattering for optical coherence tomography,” Opt. Photon. News17, 25–25 (2006).
  9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007). [CrossRef]
  10. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16, 2555–2569 (2008). [CrossRef] [PubMed]
  11. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15, 7634–7641 (2007). [CrossRef] [PubMed]
  12. A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Digital refocusing in optical coherence tomography,” Proc. SPIE8213, 82132C (2012). [CrossRef]
  13. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express14, 7661–7669 (2006). [CrossRef]
  14. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35, 3432–3434 (2010). [CrossRef] [PubMed]
  15. J. Pomarico, U. Schnars, H. J. Hartmann, and W. Juptner, “Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight,” Appl. Opt.34, 8095–8099 (1995). [CrossRef] [PubMed]
  16. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt.41, 4489–4496 (2002). [CrossRef] [PubMed]
  17. J. C. Marron and T. J. Schulz, “Three-dimensional, fine-resolution imaging using laser frequency diversity,” Opt. Lett.17, 285–287 (1992). [CrossRef] [PubMed]
  18. M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol.19, 074010 (2008). [CrossRef]
  19. A. V. Zvyagin, “Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space,” Opt. Commun.242, 97–108 (2004). [CrossRef]
  20. A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt.7, 350 (2005). [CrossRef]
  21. D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Phys. Lett.6, 753–758 (2009). [CrossRef]
  22. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett.24, 1693–1695 (1999). [CrossRef]
  23. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt.45, 8209–8217 (2006). [CrossRef] [PubMed]
  24. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1, 153–156 (1969). [CrossRef]
  25. A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Z. Med. Phys.20, 251 –276 (2010). [PubMed]
  26. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24, 1034–1041 (2007). [CrossRef]
  27. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors8, 3903–3931 (2008). [CrossRef] [PubMed]
  28. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  29. M. Born, E. Wolf, A. Bhatia, P. Clemmow, D. Gabor, A. Stokes, A. Taylor, P. Wayman, and W. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000). [PubMed]
  30. J. Goodman, Introduction to Fourier Optics, McGraw-Hill Physical and Quantum Electronics Series (Roberts & Co., 2005).
  31. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995). [CrossRef]
  32. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010). [CrossRef]
  33. U. Schnars and W. P. O. Jptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13, R85 (2002). [CrossRef]
  34. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt.45, 1861–1865 (2006). [CrossRef] [PubMed]
  35. D. Hillmann, G. Hüttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE7372, 73720R (2009). [CrossRef]
  36. S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18, 10446–10461 (2010). [CrossRef] [PubMed]
  37. K. K. Chan and S. Tang, “Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography,” Opt. Express19, 26891–26904 (2011). [CrossRef]
  38. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49, 2014–21 (2010). [CrossRef] [PubMed]
  39. K. Langenberg, M. Berger, T. Kreutter, K. Mayer, and V. Schmitz, “Synthetic aperture focusing technique signal processing,” NDT International19, 177–189 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4061 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited