OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21272–21277

Aluminum oxide nanostructure-based substrates for fluorescence enhancement

Xiang Li, Yuan He, Tianhua Zhang, and Long Que  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21272-21277 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new fluorescence enhancement technical platform based on anodic aluminum oxide (AAO) nanostructure substrate is reported for the first time. Several fluorophores have been examined on the AAO nanostructure substrates. Systematic experiments found that the enhancement factor can be up to two orders of magnitude compared to the fluorescence signals on a glass substrate, indicating its great potential for ultrasensitive fluorescence detection. Given the simple and cost-effective fabrication process of lithographically patterned AAO nanostructure, this type of AAO nanostructure platform has great potential applications, especially its integration with microdevices and microfluidic devices for fluorescence-based biological analysis.

© 2012 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.2520) Microscopy : Fluorescence microscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:

Original Manuscript: June 4, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: August 29, 2012
Published: September 4, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Xiang Li, Yuan He, Tianhua Zhang, and Long Que, "Aluminum oxide nanostructure-based substrates for fluorescence enhancement," Opt. Express 20, 21272-21277 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Q. Emili and G. Cagney, “Large-scale functional analysis using peptide or protein arrays,” Nat. Biotechnol.18(4), 393–397 (2000). [CrossRef] [PubMed]
  2. Y. Li, Y. T. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,” Nat. Biotechnol.23(7), 885–889 (2005). [CrossRef] [PubMed]
  3. M. Zimmer, “Green fluorescent protein (GFP): applications, structure, and related photophysical behavior,” Chem. Rev.102(3), 759–782 (2002). [CrossRef] [PubMed]
  4. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006). [CrossRef] [PubMed]
  5. C. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002). [CrossRef] [PubMed]
  6. E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007). [CrossRef] [PubMed]
  7. Y. J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express14(22), 10825–10830 (2006). [CrossRef] [PubMed]
  8. G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012). [CrossRef] [PubMed]
  9. A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006). [CrossRef] [PubMed]
  10. V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008). [CrossRef] [PubMed]
  11. J. Zhao, L. Wu, and J. Zhi, “Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection,” J. Mater. Chem.18(21), 2459–2465 (2008). [CrossRef]
  12. C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008). [CrossRef]
  13. S. Cloutier, A. Lazareck, and J. Xu, “Detection of nano-confined DNA using surface-plasmon enhanced fluorescence,” Appl. Phys. Lett.88(1), 0139041–0139043 (2006). [CrossRef]
  14. R. Li and H. Grebel, “Surface enhanced fluorescence: polarization characteristics,” IEEE Sens. J.10(3), 465–468 (2010). [CrossRef]
  15. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  16. G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002). [CrossRef]
  17. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007). [CrossRef] [PubMed]
  18. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited