OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21278–21290

Optimized plasmonic nanostructures for improved sensing activities

Hong Shen, Nicolas Guillot, Jérémy Rouxel, Marc Lamy de la Chapelle, and Timothée Toury  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21278-21290 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The paper outlines the optimization of plasmonic nanostructures in order to improve their sensing properties such as their sensitivity and their ease of manipulation. The key point in this study is the optimization of the localized surface plasmon resonance (LSPR) properties essential to the sensor characteristics, and more especially for surface-enhanced Raman scattering (SERS). Two aspects were considered in order to optimize the sensing performance: apolar plasmonic nanostructures for non polarization dependent detection and improvements of SERS sensitivity by using a molecular adhesion layer between gold nanostructures and glass. Both issues could be generalized to all plasmon-resonance-based sensing applications.

© 2012 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: June 4, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 15, 2012
Published: September 4, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Hong Shen, Nicolas Guillot, Jérémy Rouxel, Marc Lamy de la Chapelle, and Timothée Toury, "Optimized plasmonic nanostructures for improved sensing activities," Opt. Express 20, 21278-21290 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004). [CrossRef]
  2. W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous chip-based DNA detection,” Nanotechnology14(12), R63–R73 (2003). [CrossRef] [PubMed]
  3. S. Nie and S. R. Emory, “Probing Single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  4. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002). [CrossRef] [PubMed]
  5. H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000). [CrossRef] [PubMed]
  6. K. Kneipp, W. Yang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  7. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002). [CrossRef]
  8. F. Neubrech, A. Garcia-Etxarri, D. Weber, J. Bochterle, H. Shen, M. Lamy de la Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96(21), 213111 (2010). [CrossRef]
  9. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Status Solidi B.247(8), 2071–2074 (2010). [CrossRef]
  10. C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003). [CrossRef] [PubMed]
  11. J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, “Electromagnetic mechanism in surface-enhanced Raman scattering from Gaussian-correlated randomly rough metal substrates,” Opt. Express10(17), 879–886 (2002). [PubMed]
  12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  13. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006). [CrossRef] [PubMed]
  14. E. C. Le Ru and P. G. Etchegoin, “Single-molecule surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem.63(1), 65–87 (2012). [CrossRef] [PubMed]
  15. H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999). [CrossRef]
  16. E. M. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  17. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  18. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010). [CrossRef]
  19. K.- Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, and Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures,” Phys. Rev. B81(11), 115406 (2010). [CrossRef]
  20. J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72(3), 033407 (2005). [CrossRef]
  21. H. V. Chu, Y. J. Liu, Y. W. Huang, and Y. P. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express15(19), 12230–12239 (2007). [CrossRef] [PubMed]
  22. C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B107(30), 7426–7433 (2003). [CrossRef]
  23. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005). [CrossRef] [PubMed]
  24. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003). [CrossRef]
  25. N. Guillot, H. Shen, B. Frémaux, O. Peron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97(2), 023113 (2010). [CrossRef]
  26. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002). [CrossRef]
  27. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001). [CrossRef]
  28. J. P. Schmidt, S. E. Cross, and S. K. Buratto, “Surface-enhanced Raman scattering from ordered Ag nanocluster arrays,” J. Chem. Phys.121(21), 10657–10659 (2004). [CrossRef] [PubMed]
  29. L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006). [CrossRef]
  30. J. Janata, Principles of Chemical Sensors (Plenum Press, New York, New York, 1989)
  31. M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy,” J. Raman Spectrosc.38(3), 277–282 (2007). [CrossRef]
  32. Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103(1), 014308–014317 (2008). [CrossRef]
  33. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. J. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3(7), 2043–2048 (2009). [CrossRef] [PubMed]
  34. M. Lamy de la Chapelle, N. Guillot, B. Frémaux, H. Shen, and T. Toury, “Novel apolar plasmonic nanostructures with extended optical tunability for sensing applications,” Plasmonics (2012), doi:. [CrossRef]
  35. J. Jerphagnon, D. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys.27(4), 609–650 (1978). [CrossRef]
  36. J. Zyss, “Molecular engineering implication of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials,” J. Chem. Phys.98(9), 6583–6600 (1993). [CrossRef]
  37. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998). [CrossRef]
  38. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  39. S. H. Park, J.-H. Im, J.-W. Im, B.-H. Chun, and J.-H. Kim, “Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces,” Microchem. J.63(1), 71–91 (1999). [CrossRef]
  40. C. A. Goss, D. H. Charych, and M. Majda, “Application of 3-Mercaptopropyl)trimethoxysliane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem.63(1), 85–88 (1991). [CrossRef]
  41. X. J. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: influence of adhesion layers,” Plasmonics4(1), 37–50 (2009). [CrossRef]
  42. T. C. Tisone and J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol.9(1), 271–275 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited