OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21291–21304

Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation

Xiaoli Sun and James B. Abshire  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21291-21304 (2012)
http://dx.doi.org/10.1364/OE.20.021291


View Full Text Article

Enhanced HTML    Acrobat PDF (1024 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use theoretical models to compare the receiver signal to noise ratio (SNR) vs. average rate of detected signal photons for an integrated path differential absorption (IPDA) lidar using coherent detection with continuous wave (CW) lasers and direct detection with sine-wave and pulse modulations. The results show the coherent IPDA lidar has high receiver gain and narrow bandwidth to overcome the effects of detector circuit noise and background light, but the actual receiver performance can be limited by the coherent mixing efficiency, speckle and other factors. For direct detection, using sine-wave modulation allows the use of a low peak power laser transmitter and synchronous detection. The pulse modulation technique requires higher laser peak powers but is more efficient than sine-wave modulation in terms of average detected signal photon rate required to achieve a given receiver SNR. We also conducted experiments for the direct detection cases and the results agreed well with theory.

© 2012 OSA

OCIS Codes
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

History
Original Manuscript: June 6, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 5, 2012
Published: September 4, 2012

Citation
Xiaoli Sun and James B. Abshire, "Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation," Opt. Express 20, 21291-21304 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Measures, Laser Remote Sensing, Fundamentals and Applications (Krieger, 1992).
  2. M. S. Shumate, R. T. Menzies, W. B. Grant, and D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 20(4), 545–553 (1981). [CrossRef] [PubMed]
  3. G. N. Pearson and C. G. Collier, “A pulsed coherent CO2 lidar for boundary-layer meteorology,” Q. J. Roy Meteor Soc. A 125, 2703–2721 (1999).
  4. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004). [CrossRef] [PubMed]
  5. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006). [CrossRef] [PubMed]
  6. F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-um heterodyne differential absorption Lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25(9), 1477–1497 (2008). [CrossRef]
  7. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011). [CrossRef] [PubMed]
  8. J. Pruitt, M. E. Dobbs, M. Gypson, B. R. Neff, and W. E. Sharp, “High-speed CW lidar retrieval using spectral lock-in algorithm,” Proc. SPIE 5154, 138–145 (2003). [CrossRef]
  9. M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” 6th Annual NASA Earth Science Technology Conference (ESTF), 27–29 June, College Park, MD, Paper B4P3 (2006).
  10. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 microm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34(10), 1513–1515 (2009). [CrossRef] [PubMed]
  11. J. Caron, Y. Durand, J. Bezy, and R. Meynart, “Performance modeling for A-SCOPE: a space borne lidar measuring atmospheric CO2,” Proc. SPIE 7479, 74790E (2009). [CrossRef]
  12. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B Chem. Phys. Meterol. 62(5), 770–783 (2010). [CrossRef]
  13. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty ed. (Springer-Verlag, 1975).
  14. C. S. Gardner, “Target signatures for laser altimeters: an analysis,” Appl. Opt. 21(3), 448–453 (1982). [CrossRef] [PubMed]
  15. P. H. Flamant, R. T. Menzies, and M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23(9), 1412–1417 (1984). [CrossRef] [PubMed]
  16. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed, (John Wiley and Sons, 1995).
  17. R. N. McDonough and A. D. Whalen, Detection of Signal in Noise, 2nd ed. (Academic Press, 1995)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited