OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21305–21317

An optical leaky wave antenna with Si perturbations inside a resonator for enhanced optical control of the radiation

Salvatore Campione, Caner Guclu, Qi Song, Ozdal Boyraz, and Filippo Capolino  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21305-21317 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1573 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the directive radiation at 1550 nm from an optical leaky wave antenna (OLWA) with semiconductor perturbations made of silicon (Si). We study the radiation pattern dependence on the physical dimensions, number of perturbations and carrier densities in these semiconductor perturbations through optical excitations at a visible wavelength, 625 nm. In this detailed theoretical study we show the correlation between the pump power absorbed in the perturbations, the signal guided in the waveguide and the radiation through leakage. To overcome the limited control of the radiation intensity through excess carrier generation in Si, we present a new design with the OLWA integrated with a Fabry-Pérot resonator (FPR). We provide analytical and numerical studies of the enhanced radiation performance of the OLWA antenna inside the FPR, and derive closed-form formulas accounting for LW reflection at the edges of the FPR. A discussion on the constructive and destructive radiation by the direct and reflected leaky waves in the FPR resonator is provided. Results shown in this paper exhibit 3 dB variation of the radiation and pave the way for further optimization and theoretical developments.

© 2012 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.7390) Optical devices : Waveguides, planar
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: June 11, 2012
Revised Manuscript: August 18, 2012
Manuscript Accepted: August 20, 2012
Published: September 4, 2012

Salvatore Campione, Caner Guclu, Qi Song, Ozdal Boyraz, and Filippo Capolino, "An optical leaky wave antenna with Si perturbations inside a resonator for enhanced optical control of the radiation," Opt. Express 20, 21305-21317 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008). [CrossRef] [PubMed]
  2. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express16(25), 20295–20305 (2008). [CrossRef] [PubMed]
  3. Q. Song, F. Qian, E. K. Tien, I. Tomov, J. Meyer, X. Z. Sang, and O. Boyraz, “Imaging by silicon on insulator waveguides,” Appl. Phys. Lett.94(23), 231101 (2009). [CrossRef]
  4. Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19(9), 8735–8749 (2011). [CrossRef] [PubMed]
  5. A. A. Oliner, “Leaky-wave antennas,” in Antenna Engineering Handbook, R. C.Johnson, ed. (McGraw Hill, 1993).
  6. D. R. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Modern Antenna Handbook, C. A. Balanis, ed. (Wiley, 2008), 325–367.
  7. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express16(26), 21271–21281 (2008). [CrossRef] [PubMed]
  8. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett.34(9), 1477–1479 (2009). [CrossRef] [PubMed]
  9. E. K. Tien, X. Z. Sang, F. Qing, Q. Song, and O. Boyraz, “Ultrafast pulse characterization using cross phase modulation in silicon,” Appl. Phys. Lett.95(5), 051101 (2009). [CrossRef]
  10. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  11. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).
  12. O. Boyraz, X. Sang, E. Tien, Q. Song, F. Qian, and M. Akdas, “Silicon based optical pulse shaping and characterization,” Proc. SPIE7212, 72120U, 72120U–13 (2009). [CrossRef]
  13. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett.86(7), 071115 (2005). [CrossRef]
  14. Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011). [CrossRef] [PubMed]
  15. T. Dittrich, T. Bitzer, T. Rada, V. Y. Timoshenko, and J. Rappich, “Non-radiative recombination at reconstructed Si surfaces,” Solid-State Electron.46(11), 1863–1872 (2002). [CrossRef]
  16. F. M. Schuurmans, A. Schonecker, J. A. Eikelboom, and W. C. Sinke, “Crystal-orientation dependence of surface recombination velocity for silicon nitride passivated silicon wafers,” in Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE(1996), 485–488.
  17. S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas,” IEEE Trans. Antenn. Propag.57(7), 1894–1906 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited