OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21318–21323

A surface plasmon resonance spectrometer using a super-period metal nanohole array

Haisheng Leong and Junpeng Guo  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21318-21323 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the surface plasmon resonance in super-period nanohole arrays and demonstrate a surface plasmon resonance spectrometer using a super-period metal nanohole array device. Super-period nanohole arrays are patterned metal nanohole array gratings. In a super-period nanohole array, there is a small subwavelength nanohole period that supports local surface plasmon resonance, and also a large grating period that diffracts surface plasmon radiations to non-zeroth order diffractions. With the super-period metal nanohole array, surface plasmon resonance can be measured in the first order diffraction in addition to be traditionally measured in the zeroth order transmission. The resonance peak wavelength measured in the first order diffraction is slightly blue-shifted from the resonance wavelength measured in the zeroth order transmission.

© 2012 OSA

OCIS Codes
(300.6190) Spectroscopy : Spectrometers
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: June 18, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 31, 2012
Published: September 4, 2012

Haisheng Leong and Junpeng Guo, "A surface plasmon resonance spectrometer using a super-period metal nanohole array," Opt. Express 20, 21318-21323 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-8-3150 . [CrossRef] [PubMed]
  3. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2(2), 120–123 (2006). [CrossRef]
  4. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-16-3629 . [CrossRef] [PubMed]
  5. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002). [CrossRef]
  6. H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A27(12), 2542–2550 (2010). [CrossRef] [PubMed]
  7. H. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010). [CrossRef]
  8. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010). [CrossRef] [PubMed]
  9. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004). [CrossRef] [PubMed]
  10. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys.3(12), 884–889 (2007). [CrossRef]
  11. Q. H. Park, “Optical antennas and plasmonics,” Contemp. Phys.50(2), 407–423 (2009). [CrossRef]
  12. H. Leong and J. Guo, “Surface plasmon resonance in superperiodic metal nanoslits,” Opt. Lett.36(24), 4764–4766 (2011). [CrossRef] [PubMed]
  13. J. Guo and H. Leong, “Investigation of surface plasmon resonance in super-period gold nanoslit arrays,” J. Opt. Soc. Am. B29(7), 1712–1716 (2012). [CrossRef]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  15. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008). [CrossRef] [PubMed]
  16. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett.34(7), 896–898 (2009). [CrossRef] [PubMed]
  17. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited