OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21357–21371

Frequency comb generation by CW laser injection into a quantum-dot mode-locked laser

T. J. Pinkert, E. J. Salumbides, M. S. Tahvili, W. Ubachs, E. A. J. M. Bente, and K. S. E. Eikema  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21357-21371 (2012)
http://dx.doi.org/10.1364/OE.20.021357


View Full Text Article

Enhanced HTML    Acrobat PDF (2466 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on frequency comb generation at 1.5 μm by injection of a CW laser in a hybridly mode-locked InAs/InP two-section quantum-dot laser (HMLQDL). The generated comb has > 60 modes spaced by ∼ 4.5 GHz and a −20 dBc width of > 100 GHz (23 modes) at > 30 dB signal to background ratio. Comb generation was observed with the CW laser (red) detuned more than 20 nm outside the HMLQDL spectrum, spanning a large part of the gain spectrum of the quantum dot material. It is shown that the generated comb is fully coherent with the injected CW laser and RF frequency used to drive the hybrid mode-locking. This method of comb generation is of interest for the creation of small and robust frequency combs for use in optical frequency metrology, high-frequency (> 100 GHz) RF generation and telecommunication applications.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.2090) Optical devices : Electro-optical devices
(130.4110) Integrated optics : Modulators
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Integrated Optics

History
Original Manuscript: July 3, 2012
Manuscript Accepted: August 12, 2012
Published: September 4, 2012

Citation
T. J. Pinkert, E. J. Salumbides, M. S. Tahvili, W. Ubachs, E. A. J. M. Bente, and K. S. E. Eikema, "Frequency comb generation by CW laser injection into a quantum-dot mode-locked laser," Opt. Express 20, 21357-21371 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000). [CrossRef] [PubMed]
  2. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288, 635–639 (2000). [CrossRef] [PubMed]
  3. H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz level measurement of the optical clock frequency in a single 88Sr+ ion,” Science306, 1355–1358 (2004). [CrossRef] [PubMed]
  4. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17, 9300–9313 (2009). [CrossRef] [PubMed]
  5. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008). [CrossRef] [PubMed]
  6. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature (London)445, 627–630 (2007). [CrossRef]
  7. S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Wavelength controlled InAs/InP quantum dots for telecom laser applications,” Microelectron. J.37, 1461–1467 (2006). [CrossRef]
  8. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express16, 10835–10840 (2008). [CrossRef] [PubMed]
  9. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron.17, 1292–1301 (2011). [CrossRef]
  10. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledenstov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87, 081107 (2005). [CrossRef]
  11. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photonics1, 395–401 (2007). [CrossRef]
  12. K. W. Holman, D. J. Jones, J. Ye, and E. P. Ippen, “Orthogonal control of the frequency comb dynamics of a mode-locked laser diode,” Opt. Lett.28, 2405–2407 (2003). [CrossRef] [PubMed]
  13. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express17, 3331–3340 (2009). [CrossRef] [PubMed]
  14. T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, S. P. Hegarty, D. Rachinskii, and G. Huyet, “Quantum-dot mode-locked lasers with dual mode optical injection,” IEEE Photonics Tech. Lett.22, 359–361 (2010). [CrossRef]
  15. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 phase × 32 amplitude optical arbitrary waveform generation,” Opt. Lett.32, 865–867 (2007). [CrossRef] [PubMed]
  16. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18, 3415–3425 (2010). [CrossRef] [PubMed]
  17. S. Arahira, H. Takahashi, K. Nakamura, H. Yaegashi, and Y. Ogawa, “Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-locked laser diode with orthogonally pumped polarization-diversity configuration,” IEEE J. Quantum Electron.45, 476 –487 (2009). [CrossRef]
  18. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36, 2089–2090 (2000). [CrossRef]
  19. T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Tech. Lett.17, 1274 –1276 (2005). [CrossRef]
  20. T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Tech.28, 2247 –2257 (2010). [CrossRef]
  21. R. Zhou, S. Latkowski, J. O’Caroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40nm wavelength tunable gain-switched optical comb source,” Opt. Express19, B415–B420 (2011). [CrossRef]
  22. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16, 841–859 (2008). [CrossRef] [PubMed]
  23. M. J. R. Heck, E. J. Salumbides, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, R. van Veldhoven, R. Nötzel, K. S. E. Eikema, and W. Ubachs, “Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm,” Opt. Express17, 18063–18075 (2009). [CrossRef] [PubMed]
  24. M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quantum Electron.15, 634–643 (2009). [CrossRef]
  25. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 μm,” Opt. Express15, 16292–16301 (2007). [CrossRef] [PubMed]
  26. S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89, 073115 (2006). [CrossRef]
  27. M. S. Tahvili, L. Du, M. J. R. Heck, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers,” Opt. Express20, 8117–8135 (2012). [CrossRef] [PubMed]
  28. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989). [CrossRef]
  29. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser.” Opt. Express13, 9169–9201 (2005). [CrossRef]
  30. R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. J. G. M. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Nötzel, and J. H. Wolter, “All-optical switching due to state filling in quantum dots,” Appl. Phys. Lett.84, 4059–4061 (2004). [CrossRef]
  31. T. Healy, F. C. Garcia Gunning, and A. D. Ellis, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15, 2981–2986 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited