OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21495–21504

Polarization suppression of the nonresonant background in femtosecond coherent anti-Stokes Raman scattering for flame thermometry at 5 kHz

Daniel R. Richardson, Devashish Bangar, and Robert P. Lucht  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21495-21504 (2012)
http://dx.doi.org/10.1364/OE.20.021495


View Full Text Article

Enhanced HTML    Acrobat PDF (1490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent anti-Stokes Raman scattering (CARS) spectra are acquired at 5 kHz in steady and unsteady flames while suppressing the nonresonant background by polarization techniques. Broadband femtosecond (fs) pump and Stokes pulses efficiently excite many Raman transitions in diatomic nitrogen which subsequently interfere and decay. Single-laser-shot measurements are performed as the decay of the Raman coherence is mapped to the frequency of the CARS signal by a chirped-probe pulse (CPP). As temperature increases, more Raman transitions contribute to the Raman coherence which leads to faster decay of the Raman coherence. Experimental fs CARS spectra are compared to a theoretical model to extract temperature measurements. The effects of probe time delay and temperature on nonresonant background suppressed CPP fs CARS spectra are examined. By suppressing the nonresonant background the evolution of the Raman coherence near zero probe time delay is more clearly revealed. The structure of the CPP fs CARS spectra with and without nonresonant background suppression is compared. The utility of polarization suppression of the nonresonant background for CPP fs CARS measurements is discussed.

© 2012 OSA

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(260.5430) Physical optics : Polarization
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 30, 2012
Revised Manuscript: August 16, 2012
Manuscript Accepted: August 19, 2012
Published: September 5, 2012

Citation
Daniel R. Richardson, Devashish Bangar, and Robert P. Lucht, "Polarization suppression of the nonresonant background in femtosecond coherent anti-Stokes Raman scattering for flame thermometry at 5 kHz," Opt. Express 20, 21495-21504 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21495


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem 1(1), 663–687 (2008). [CrossRef] [PubMed]
  2. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010). [CrossRef]
  3. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005). [CrossRef] [PubMed]
  4. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005). [CrossRef]
  5. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011). [CrossRef] [PubMed]
  6. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012). [CrossRef] [PubMed]
  7. J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express 20(5), 5003–5010 (2012). [CrossRef] [PubMed]
  8. H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2,” Appl. Opt. 50(4), A38–A48 (2011). [CrossRef] [PubMed]
  9. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009). [CrossRef]
  10. C. J. Kliewer, Y. Gao, T. Seeger, B. D. Patterson, R. L. Farrow, and T. B. Settersten, “Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 50(12), 1770–1778 (2011). [CrossRef] [PubMed]
  11. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011). [CrossRef] [PubMed]
  12. X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, and G. R. Welch, “Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique,” Phys. Rev. A 81(1), 013813 (2010). [CrossRef]
  13. Y. J. Lee, S. H. Parekh, J. A. Fagan, and M. T. Cicerone, “Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes,” Phys. Rev. B 82(16), 165432 (2010). [CrossRef]
  14. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011). [CrossRef] [PubMed]
  15. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  16. O. Yue, M. T. Bremer, D. Pestov, J. R. Gord, S. Roy, M. Dantos, “Gas-phase thermometry via multi-time-to-frequency mapping of coherence dephasing,” (accepted for publication in J. of Phys. Chem. A, 2012).
  17. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, J. R. Gord, M. Dantus, and S. Roy, “Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source,” Opt. Express 19(6), 5163–5171 (2011). [CrossRef] [PubMed]
  18. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys. 127(4), 044316 (2007). [CrossRef] [PubMed]
  19. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006). [CrossRef]
  20. T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry,” J. Opt. Soc. Am. B 19(2), 340–344 (2002). [CrossRef]
  21. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009). [CrossRef] [PubMed]
  22. L. Rahn, L. Zych, and P. Mattern, “Coherent anti-Stokes Raman spectroscopy (CARS) with background rejection in a flame,” IEEE J. Quantum Electron. 15(9), 973 (1979). [CrossRef]
  23. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003). [CrossRef] [PubMed]
  24. D. Gachet, F. Billard, and H. Rigneault, “Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. A 77(6), 061802 (2008). [CrossRef]
  25. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002). [CrossRef]
  26. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007). [CrossRef] [PubMed]
  27. J. Lin, F. Lu, W. Zheng, and Z. Huang, “Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging,” Appl. Phys. Lett. 97(8), 083701 (2010). [CrossRef]
  28. D. Gachet, S. Brustlein, and H. Rigneault, “Revisiting the Young’s double slit experiment for background-free nonlinear Raman spectroscopy and microscopy,” Phys. Rev. Lett. 104(21), 213905 (2010). [CrossRef] [PubMed]
  29. J. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002). [CrossRef]
  30. X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801 (2011). [CrossRef]
  31. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006). [CrossRef] [PubMed]
  32. C. Alan, Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996).
  33. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104(3), 699–714 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited