OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21505–21511

Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains

Lan Jiang, Xuesong Shi, Xin Li, Yanping Yuan, Cong Wang, and Yongfeng Lu  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21505-21511 (2012)
http://dx.doi.org/10.1364/OE.20.021505


View Full Text Article

Enhanced HTML    Acrobat PDF (1903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study reveals that the periods, ablation areas and orientations of periodic surface structures (ripples) in fused silica can be adjusted by using designed femtosecond (fs) laser pulse trains to control transient localized electron dynamics and corresponding material properties. By increasing the pulse delays from 0 to 100fs, the ripple periods are changed from ~550nm to ~255nm and the orientation is rotated by 90°. The nearwavelength/subwavelength ripple periods are close to the fundamental/second-harmonic wavelengths in fused silica respectively. The subsequent subpulse of the train significantly impacts free electron distributions generated by the previous subpulse(s), which might influence the formation mechanism of ripples and the surface morphology.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Laser Microfabrication

History
Original Manuscript: June 8, 2012
Revised Manuscript: July 9, 2012
Manuscript Accepted: August 21, 2012
Published: September 5, 2012

Citation
Lan Jiang, Xuesong Shi, Xin Li, Yanping Yuan, Cong Wang, and Yongfeng Lu, "Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains," Opt. Express 20, 21505-21511 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  2. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983). [CrossRef]
  3. Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, and K. Fujii, “Controllable laser-induced periodic structures at silicon-dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys.80(12), 7052–7056 (1996). [CrossRef]
  4. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005). [CrossRef]
  5. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express13(17), 6651–6656 (2005). [CrossRef] [PubMed]
  6. M. Couillard, A. Borowiec, H. K. Haugen, J. S. Preston, E. M. Griswold, and G. A. Botton, “Subsurface modifications in indium phosphide induced by single and multiple femtosecond laser pulses: A study on the formation of periodic ripples,” J. Appl. Phys.101(3), 033519 (2007). [CrossRef]
  7. J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci.255(10), 5641–5646 (2009). [CrossRef]
  8. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003). [CrossRef]
  9. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μm,” Appl. Phys. Lett.23(11), 598–600 (1973). [CrossRef]
  10. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-Organized Nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  11. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  12. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005). [CrossRef]
  13. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012). [CrossRef] [PubMed]
  14. E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800nm,” Appl. Phys. Lett.91(11), 111102 (2007). [CrossRef]
  15. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005). [CrossRef]
  16. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express18(S4Suppl 4), A600–A619 (2010). [CrossRef] [PubMed]
  17. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett.87(15), 151104 (2005). [CrossRef]
  18. V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci.252(20), 7449–7460 (2006). [CrossRef]
  19. J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng.46(4), 306–310 (2008). [CrossRef]
  20. A. Rosenfeld, M. Rohloff, S. Höhm, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences,” Appl. Sur. Sci. doi: 10.1016/j.apsusc.2011.09.076 (2011). [CrossRef]
  21. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999). [CrossRef]
  22. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett.80(3), 353–355 (2002). [CrossRef]
  23. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys., A Mater. Sci. Process.77(2), 265–269 (2003).
  24. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science314(5798), 443–446 (2006). [CrossRef] [PubMed]
  25. A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature449(7165), 1029–1032 (2007). [CrossRef] [PubMed]
  26. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond control and measurement: lightwave electronics,” Science317(5839), 769–775 (2007). [CrossRef] [PubMed]
  27. C. Wang, L. Jiang, F. Wang, X. Li, Y. P. Yuan, and H. L. Tsai, “First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions,” Phys. Lett. A375(36), 3200–3204 (2011). [CrossRef]
  28. L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett.37(14), 2781–2783 (2012). [CrossRef] [PubMed]
  29. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys.105(5), 053102 (2009). [CrossRef]
  30. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology22(5), 055304 (2011). [CrossRef] [PubMed]
  31. L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys.100(2), 023116 (2006). [CrossRef]
  32. Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics,” J. Phys. D45(17), 175301 (2012). [CrossRef]
  33. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited