OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21583–21597

Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system

Jinbiao Xiao and Xiaohan Sun  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21583-21597 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A vector mode solver for bending waveguides by using a modified finite-difference (FD) method is developed in a local cylindrical coordinate system, where the perfectly matched layer absorbing boundary conditions are incorporated. Utilizing Taylor series expansion technique and continuity condition of the longitudinal field components, a standard matrix eigenvalue equation without the averaged index approximation approach for dealing with the discrete points neighboring the dielectric interfaces is obtained. Complex effective indexes and field distributions of leaky modes for a typical rib bending waveguide and a silicon wire bend are presented, and solutions accord well with those from the film mode matching method, which shows the validity and utility of the established method.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: July 16, 2012
Revised Manuscript: August 28, 2012
Manuscript Accepted: August 31, 2012
Published: September 5, 2012

Jinbiao Xiao and Xiaohan Sun, "Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system," Opt. Express 20, 21583-21597 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Harshman and T. K. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010). [CrossRef]
  2. D. F. Welch, A. K. Kish, R. Nagarajan, C. H. Joyner, R. P. Schneider, V. G. Dominic, M. L. Mitchell, S. G. Grubb, T. K. Chiang, D. D. Perkins, and A. C. Nilsson, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightwave Technol.24(12), 4674–4683 (2006).
  3. N. Somasiri, B. M. A. Rahman, and S. S. A. Obayya, “Fabrication tolerance study of a compact passive polarization rotator,” J. Lightwave Technol.20(4), 751–757 (2002). [CrossRef]
  4. C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, G. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett.8(10), 1346–1348 (1996). [CrossRef]
  5. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  6. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photon. Technol. Lett.8(5), 649–651 (1996). [CrossRef]
  7. J. S. Gu, P. A. Besse, and H. Melchior, “Method of lines for the analysis of the propagation characteristics of curved optical rib wave-guides,” IEEE J. Quantum Electron.27(3), 531–537 (1991). [CrossRef]
  8. R. Pregla, “The method of lines for the analysis of dielectric waveguide bends,” J. Lightwave Technol.14(4), 634–639 (1996). [CrossRef]
  9. L. Prkna, M. Hubalek, and J. Ctyroky, “Vectorial eigenmode solver for bent waveguides based on mode matching,” IEEE Photon. Technol. Lett.16(9), 2057–2059 (2004). [CrossRef]
  10. L. Prkna, M. Hubalek, and J. Ctyroky, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron.11(1), 217–223 (2005). [CrossRef]
  11. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express14(23), 11128–11141 (2006). [CrossRef] [PubMed]
  12. B. M. A. Rahman, D. M. H. Leung, S. S. A. Obayya, and K. T. V. Grattan, “Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling,” Appl. Opt.47(16), 2961–2970 (2008). [CrossRef] [PubMed]
  13. J. Xiao, H. Ni, and X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems,” Opt. Lett.33(16), 1848–1850 (2008). [CrossRef] [PubMed]
  14. J. Xiao, H. Ma, N. Bai, X. Liu, and H. Sun, “Full-vectorial mode solver for bending waveguides using multidomain pseudospectral method in a cylindrical coordinate system,” IEEE Photon. Technol. Lett.21(23), 1779–1781 (2009). [CrossRef]
  15. M. Rivera, “A finite difference BPM analysis of bent dielectric waveguides,” J. Lightwave Technol.13(2), 233–238 (1995). [CrossRef]
  16. S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol.14(9), 2085–2092 (1996). [CrossRef]
  17. W. W. Liu, C. L. Xu, T. Hirono, K. Yokoyama, and W. P. Huang, “Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximation,” J. Lightwave Technol.16(5), 910–914 (1998). [CrossRef]
  18. N. N. Feng, G. R. Zhou, C. L. Xu, and W. P. Huang, “Computation of full-vector modes for bending waveguides using cylindrical perfectly matched layers,” J. Lightwave Technol.20(11), 1976–1980 (2002). [CrossRef]
  19. J. Xiao, H. Ma, N. Bai, X. Liu, and X. Sun, “Full-vectorial analysis of bending waveguides using finite difference method based on H-fields in cylindrical coordinate systems,” Opt. Commun.282(13), 2511–2515 (2009). [CrossRef]
  20. M. Krause, “Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces,” J. Lightwave Technol.29(5), 691–699 (2011). [CrossRef]
  21. F. L. Texeira and W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett.7(9), 285–287 (1997). [CrossRef]
  22. P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol.12(3), 487–494 (1994). [CrossRef]
  23. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  24. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1371–1379 (2006). [CrossRef]
  25. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011). [CrossRef]
  26. C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited