OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21598–21611

Study of hybrid driven micromirrors for 3-D variable optical attenuator applications

Kah How Koh, Bo Woon Soon, Julius Minglin Tsai, Aaron J. Danner, and Chengkuo Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21598-21611 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2637 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aluminium-coated micromirrors driven by electrothermal and electromagnetic actuations have been demonstrated for 3-D variable optical attenuation applications. Three types of attenuation schemes based on electrothermal, electromagnetic and hybrid, i.e. combination of electrothermal and electromagnetic, actuations have been developed. In addition, two different designs have been fabricated and characterized to investigate the effects of the variations made to both the actuators on the optical attenuation performances of the micromirror. Our unique design of using both ET and EM actuators simultaneously to achieve attenuation is the first demonstration of such hybrid driven CMOS compatible MEMS VOA device.

© 2012 OSA

OCIS Codes
(230.4040) Optical devices : Mirrors
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

Original Manuscript: July 17, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 24, 2012
Published: September 5, 2012

Kah How Koh, Bo Woon Soon, Julius Minglin Tsai, Aaron J. Danner, and Chengkuo Lee, "Study of hybrid driven micromirrors for 3-D variable optical attenuator applications," Opt. Express 20, 21598-21611 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron.8(1), 148–154 (2002). [CrossRef]
  2. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006). [CrossRef]
  3. K. H. Koh, T. Kobayashi, F.-L. Hsiao, and C. Lee, “Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors,” Sens. Actuators A Phys.162(2), 336–347 (2010). [CrossRef]
  4. K. H. Koh, T. Kobayashi, J. Xie, A. Yu, and C. Lee, “Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications,” J. Micromech. Microeng.21(7), 075001 (2011). [CrossRef]
  5. K. H. Koh, T. Kobayashi, and C. Lee, “A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film s-shaped actuator,” Opt. Express19(15), 13812–13824 (2011). [CrossRef] [PubMed]
  6. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face Imaging,” Opt. Express15(5), 2445–2453 (2007). [CrossRef] [PubMed]
  7. J. Sun, S. J. Lee, L. Wu, M. Sarntinoranont, and H. Xie, “Refractive index measurement of acute rat brain tissue slices using optical coherence tomography,” Opt. Express20(2), 1084–1095 (2012). [CrossRef] [PubMed]
  8. C. Lee and J. A. Yeh, “Development and evolution of MOEMS technology in variable optical attenuators,” J. Micro/Nanolith. MEMS MOEMS7, 021003 (2008).
  9. H. Toshiyoshi and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” J. Microelectromech. Syst.5(4), 231–237 (1996). [CrossRef]
  10. Y.-J. Yang, B.-T. Liao, and W.-C. Kuo, “A novel 2 × 2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng.17(5), 875–882 (2007). [CrossRef]
  11. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007). [CrossRef]
  12. C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron.5(1), 18–25 (1999). [CrossRef]
  13. C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett.11(2), 233–235 (1999). [CrossRef]
  14. A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng.13(3), 400–411 (2003). [CrossRef]
  15. C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tasi, C. Chen, and C.-Y. Wu, “3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,” IEEE Photon. Technol. Lett.16(4), 1044–1046 (2004). [CrossRef]
  16. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng.14(12), 1700–1710 (2004). [CrossRef]
  17. H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, and E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photon. Technol. Lett.17(2), 402–404 (2005). [CrossRef]
  18. J. A. Yeh, S.-S. Jiang, and C. Lee, “MOEMS variable optical attenuators using rotary comb drive actuators,” IEEE Photon. Technol. Lett.18(10), 1170–1172 (2006). [CrossRef]
  19. C. Chen, C. Lee, and J. A. Yeh, “Retro-reflection type MOEMS VOA,” IEEE Photon. Technol. Lett.16(10), 2290–2292 (2004). [CrossRef]
  20. T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE J. Sel. Top. Quantum Electron.10(3), 558–562 (2004). [CrossRef]
  21. C. Lee, “A MEMS VOA Using Electrothermal Actuators,” J. Lightwave Technol.25(2), 490–498 (2007). [CrossRef]
  22. X. M. Zhang, A. Q. Liu, H. Cai, A. B. Yu, and C. Lu, “Retro-Axial VOA using parabolic mirror pair,” IEEE Photon. Technol. Lett.19(9), 692–694 (2007). [CrossRef]
  23. N. A. Riza and S. Sumriddetchkajorn, “Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device,” Opt. Lett.24(5), 282–284 (1999). [CrossRef] [PubMed]
  24. W. Sun, W. Noell, M. Zickar, M. J. Mughal, F. Perez, N. A. Riza, and N. F. de Rooij, “Design, simulation, fabrication, and characterization of a digital variable optical attenuator,” J. Microelectromech. Syst.15(5), 1190–1200 (2006). [CrossRef]
  25. K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron.10(3), 570–578 (2004). [CrossRef]
  26. C. Lee, F.-L. Hsiao, T. Kobayashi, K. H. Koh, P. V. Ramana, W. Xiang, B. Yang, C. W. Tan, and D. Pinjala, “A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators,” IEEE J. Sel. Top. Quantum Electron.15(5), 1529–1536 (2009). [CrossRef]
  27. K. H. Koh, C. Lee, and T. Kobayashi, “A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects,” J. Microelectromech. Syst.19(6), 1370–1379 (2010). [CrossRef]
  28. H.-T. Hsieh, C.-H. Li, and G.-D. J. Su, “Amorphous fluoropolymer micromembrane for variable optical attenuation,” Sens. Actuators A Phys.168(1), 172–178 (2011). [CrossRef]
  29. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng.18(11), 115016 (2008). [CrossRef]
  30. P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng.21(12), 125027 (2011). [CrossRef]
  31. I. J. Cho, T. Song, S.-H. Baek, and E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw. Theory Tech.53(7), 2450–2457 (2005). [CrossRef]
  32. B. Yang, C. Lee, W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith. MEMS MOEMS9, 023002 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited