OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21618–21626

Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals

Zefeng Chen, Peng Han, Chi Wah Leung, Yu Wang, Mingzhe Hu, and Yihang Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21618-21626 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the physical mechanism of optical Tamm states using the phase properties of the photonic crystals. Based on such mechanism, we propose an efficient way that can precisely produce optical Tamm states at specific frequencies. Moreover, we show that dielectric photonic crystals and single-negative materials can be effectively connected through their reflection phase. Two kinds of one-dimensional dielectric photonic crystals with different single-negative characteristics are designed and repeated alternately to construct a superlattice structure. The band structures and the transmission spectra of this superlattice show that multiple optical Tamm states arise and these Tamm states are coupled with each other to form transmission bands. A special zero-effective-phase gap can also be observed in such superlattice.

© 2012 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 6, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: August 30, 2012
Published: September 5, 2012

Zefeng Chen, Peng Han, Chi Wah Leung, Yu Wang, Mingzhe Hu, and Yihang Chen, "Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals," Opt. Express 20, 21618-21626 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. J. He, H. Jia, C. Y. Qiu, S. S. Peng, X. F. Mei, F. Y. Cai, P. Peng, M. Z. Ke, and Z. Y. Liu, “Acoustic transmission enhancement through a periodically structured stiff plate without any opening,” Phys. Rev. Lett.105(7), 074301 (2010). [CrossRef] [PubMed]
  2. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008). [CrossRef] [PubMed]
  3. X. S. Wang, A. Bezryadina, Z. G. Chen, K. G. Makris, D. N. Christodoulides, and G. I. Stegeman, “Observation of two-dimensional surface solitons,” Phys. Rev. Lett.98(12), 123903 (2007). [CrossRef] [PubMed]
  4. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72(23), 233102 (2005). [CrossRef]
  5. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett.101(11), 113902 (2008). [CrossRef] [PubMed]
  6. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76(16), 165415 (2007). [CrossRef]
  7. A. Kavokin, I. Shelykh, and G. Malpuech, “Optical tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett.87(26), 261105 (2005). [CrossRef]
  8. O. Gazzano, S. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett.107(24), 247402 (2011). [CrossRef] [PubMed]
  9. C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of tamm plasmon/exciton polaritons,” Appl. Phys. Lett.95(15), 151114 (2009). [CrossRef]
  10. C. H. Xue, H. T. Jiang, and H. Chen, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett.36(6), 855–857 (2011). [CrossRef] [PubMed]
  11. H. C. Zhou, G. Yang, K. Wang, H. Long, and P. X. Lu, “Multiple optical tamm states at a metal-dielectric mirror interface,” Opt. Lett.35(24), 4112–4114 (2010). [CrossRef] [PubMed]
  12. J. Y. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 026607 (2008). [CrossRef] [PubMed]
  13. A. V. Kavokin and M. A. Kaliteevski, “Excitonic light reflection and absorption in semiconductor microcavities,” Solid State Commun.95, 859–862 (1995). [CrossRef]
  14. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B6(5), 910–916 (1989). [CrossRef]
  15. Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003). [CrossRef] [PubMed]
  16. Z.-Y. Li and K.-M. Ho, “Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides,” Phys. Rev. B68(24), 245117 (2003). [CrossRef]
  17. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  18. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008). [CrossRef] [PubMed]
  19. C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T. P. Meyrath, and H. Giessen, “Transition from thin-film to bulk properties of metamaterials,” Phys. Rev. B77(3), 035126 (2008). [CrossRef]
  20. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6 Pt 2), 066607 (2004). [CrossRef] [PubMed]
  21. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Sounders, Philadelphia, 1976).
  22. J. Callaway, Quantum Theory of the Solid State (Academic Press, Boston, 1991).
  23. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett.84(10), 2140–2143 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited