OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21645–21655

Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms

Yasuyuki Ichihashi, Ryutaro Oi, Takanori Senoh, Kenji Yamamoto, and Taiichiro Kurita  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21645-21655 (2012)
http://dx.doi.org/10.1364/OE.20.021645


View Full Text Article

Enhanced HTML    Acrobat PDF (2999 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.

© 2012 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(090.2870) Holography : Holographic display
(090.5694) Holography : Real-time holography

ToC Category:
Holography

History
Original Manuscript: June 15, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: September 1, 2012
Published: September 6, 2012

Citation
Yasuyuki Ichihashi, Ryutaro Oi, Takanori Senoh, Kenji Yamamoto, and Taiichiro Kurita, "Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms," Opt. Express 20, 21645-21655 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt.26(20), 4351–4357 (1987), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-26-20-4351 . [CrossRef] [PubMed]
  2. P. St-Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE1212–20, 174–182 (1990). [CrossRef]
  3. N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” Proc. SPIE1461, 291–302 (1991). [CrossRef]
  4. K. Sato, K. Higuchi, and H. Katsuma, “Holographic television by liquid crystal devices,” Proc. SPIE1667, 19–31 (1992). [CrossRef]
  5. M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM SIGGRAPH 95, 387– 394 (1995).
  6. M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng.35(6), 1529–1537 (1996). [CrossRef]
  7. M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J.35(3.4), 349–365 (1996). [CrossRef]
  8. T. Okada, S. Iwata, O. Nishikawa, K. Matsumoto, H. Yoshikawa, K. Sato, and T. Honda, “The fast computation of holograms for the interactive holographic 3D display system,” Proc. SPIE2577, 33–40 (1995). [CrossRef]
  9. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express17(18), 16038–16045 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16038 . [CrossRef] [PubMed]
  10. Y. Ichihashi, N. Masuda, M. Tsuge, H. Nakayama, A. Shiraki, T. Shimobaba, and T. Ito, “One-unit system to reconstruct a 3-D movie at a video-rate via electroholography,” Opt. Express17(22), 19691–19697 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19691 . [CrossRef] [PubMed]
  11. J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove“Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE7957, 795702, 795702-7 (2011). [CrossRef]
  12. J. Barabas, S. Jolly, D. E. Smalley, and V. Michael Bove., “Depth perception and user interface in digital holographic television,” Proc. SPIE8281, 828109, 828109-6 (2012). [CrossRef]
  13. Y. Takaki and J. Nakamura, “Development of a Holographic Display Module Using a 4k2k-SLM Based on the Resolution Redistribution Technique,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DM2C.5 http://www.opticsinfobase.org/abstract.cfm?URI=DH-2012-DM2C.5 .
  14. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Display Technol.7(7), 382–390 (2011), http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-7-7-382 . [CrossRef]
  15. T. Mishina, R. Oi, J. Arai, F. Okano, and M. Okui, “Three-dimensional image reconstruction of real objects with electronic holography using 4K2K liquid crystal panels,” in Proceedings of the 14th International Display Workshops (IDW’07), 3D3–4L, 2253–2254 (2007).
  16. K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE7619, 761906, 761906-10 (2010). [CrossRef]
  17. M. G. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).
  18. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt.37(11), 2034–2045 (1998), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-11-2034 . [CrossRef] [PubMed]
  19. R. V. Pole, “3D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett.10(1), 20–22 (1967). [CrossRef]
  20. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A15(8), 2059–2065 (1998), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-8-2059 . [CrossRef]
  21. T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express8(4), 255–262 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-4-255 . [CrossRef] [PubMed]
  22. T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 263–272 (2006).
  23. O. Bryngdahl and A. Lohmann, “Single-Sideband Holography,” J. Opt. Soc. Am.58(5), 620–624 (1968), http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-58-5-620 . [CrossRef]
  24. T. Mishina, F. Okano, and I. Yuyama, “Time-Alternating Method Based on Single-Sideband Holography with Half-Zone-Plate Processing for the Enlargement of Viewing Zones,” Appl. Opt.38(17), 3703–3713 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-17-3703 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2816 KB)     
» Media 2: MOV (2807 KB)     
» Media 3: MOV (3469 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited