OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21665–21677

Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry

Julien Réhault and Jan Helbing  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21665-21677 (2012)
http://dx.doi.org/10.1364/OE.20.021665


View Full Text Article

Enhanced HTML    Acrobat PDF (1080 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The signal to noise in two-dimensional spectra recorded in the pump-probe geometry can be significantly improved with a quasi-crossed polarizer configuration, often employed in linear dichroism measurements. Here we examine this method in detail and demonstrate how to analyse and interpret the amplified signals. The angle between transition dipole moments can be determined with better accuracy than in conventional anisotropy measurements, and the method can be used to selectively suppress individual peaks and to efficiently remove scattering contributions. We present spectra of the coupled CO-stretch modes of a Ruthenium-carbonyl complex in DMSO for experimental illustration.

© 2012 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: June 15, 2012
Revised Manuscript: August 3, 2012
Manuscript Accepted: August 31, 2012
Published: September 6, 2012

Citation
Julien Réhault and Jan Helbing, "Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry," Opt. Express 20, 21665-21677 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21665


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Hamm, M. Lim, and R. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B102, 6123–6138 (1998). [CrossRef]
  2. M. Khalil, N. Demirdven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A107, 5258–5279 (2003). [CrossRef]
  3. D. M. Jonas, “Two-Dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54, 425–463 (2003). [CrossRef]
  4. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005). [CrossRef]
  5. R. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” Proc. Nat. Acad. Sci. U.S.A.104, 14190–14196 (2007). [CrossRef]
  6. J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res.40, 75–83 (2007). [CrossRef]
  7. Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide i Two-Dimensional infrared spectroscopy of proteins,” Acc. Chem. Res.41, 432–441 (2008). [CrossRef]
  8. Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and Hydrogen-Bond dynamics,” J. Phys. Chem. B113, 8231–8251 (2009). [CrossRef]
  9. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol., Opt. Phys.57, 249–321 (2009). [CrossRef]
  10. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies,” Ann. Rev. Phys. Chem.49, 99–123 (1998). [CrossRef]
  11. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B15, 1791–1794 (1998). [CrossRef]
  12. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett.32, 2966–2968 (2007). [CrossRef]
  13. U. Selig, F. Langhojer, F. Dimler, T. Lhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett.33, 2851–2853 (2008). [CrossRef]
  14. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011). [CrossRef]
  15. S. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. U.S.A.104, 14197–14202 (2007). [CrossRef]
  16. S. Shim and M. T. Zanni, “How to turn your pumpprobe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11, 748–761 (2009). [CrossRef]
  17. J. Helbing and P. Hamm, “Compact implementation of fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B28, 171–178 (2011). [CrossRef]
  18. S. T. Roberts, J. J. Loparo, K. Ramasesha, and A. Tokmakoff, “A fast-scanning fourier transform 2D IR interferometer,” Opt. Comm.284, 1062–1066 (2011). [CrossRef]
  19. M. T. Zanni, N. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Nat. Acad. Sci. U.S.A.98, 11265 –11270 (2001). [CrossRef]
  20. K. Lee, K. Park, S. Park, S. Jeon, and M. Cho, “Polarization-Angle-Scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method,” J. Phys. Chem. B115, 5456–5464 (2010). [CrossRef]
  21. S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive Two-Dimensional vibrational spectroscopy,” J. Phys. Chem. B104, 11316–11320 (2000). [CrossRef]
  22. R. M. Hochstrasser, “Two-dimensional IR-spectroscopy: polarization anisotropy effects,” Chem. Phys.266, 273–284 (2001). [CrossRef]
  23. V. Volkov and P. Hamm, “A Two-Dimensional infrared study of localization, structure, and dynamics of a dipeptide in membrane environment,” Biophy. J.87, 4213–4225 (2004). [CrossRef]
  24. A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with Two-Dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110, 13991–14000 (2006). [CrossRef]
  25. M. Ji, M. Odelius, and K. J. Gaffney, “Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution,” Science328, 1003–1005 (2010). [CrossRef]
  26. V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys.121, 5935–5942 (2004). [CrossRef]
  27. W. Xiong and M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett.33, 1371–1373 (2008). [CrossRef]
  28. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Exp.16, 17420–17428 (2008). [CrossRef]
  29. D. Che, D. B. Shapiro, R. M. Esquerra, and D. S. Kliger, “Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers,” Chem. Phys. Lett.224, 145–154 (1994). [CrossRef]
  30. J Réhault, V. Zanirato, M. Olivucci, and J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys.134, 124516–124516–10 (2011). [CrossRef]
  31. A. Tokmakoff, “Orientational correlation functions and polarization selectivity for nonlinear spectroscopy of isotropic media. I. third order,” J. Chem. Phys.105, 1 (1996).
  32. J. Bredenbeck, J. Helbing, and P. Hamm, “Transient two-dimensional infrared spectroscopy: Exploring the polarization dependence,” J. Chem. Phys.121, 5943–5957 (2004). [CrossRef]
  33. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, and P. Donaldson, “Enhancing signal detection and completely eliminating scattering usingquasi-phase-cycling in 2D IR experiments,” Opt. Exp.18, 27067–27078 (2010). [CrossRef]
  34. A. W. Albrecht, J. D. Hybl, S. M. Gallagher Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys.111, 10934–1956 (1999). [CrossRef]
  35. M. Ji and K. J. Gaffney, “Orientational relaxation dynamics in aqueous ionic solution: Polarization-selective two-dimensional infrared study of angular jump-exchange dynamics in aqueous 6M NaClO4,” J. Chem. Phys.134, 044516–044516–13 (2011). [CrossRef]
  36. K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509–054509–11 (2011). [CrossRef]
  37. Note that in our discussion of polarization-enhanced UV-IR pump-probe spectroscopy in ref. [30], we neglected the symmetry of the problem. Considering ΔA± signals separately, we wrongly stated that measurements with only little amplification were always necessary in order to reliably determine β0 and therefore concluded that our approach constituted only a modest improvement when compared to the conventional method of using parallel and perpendicular probing. This is actually not true and this method can be in fact much more precise for the determination of angles, especially near magic angle, or when the usual anisotropy measurements fail because of low signal to noise.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited