OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21758–21765

Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths

Thang B. Hoang, Johannes Beetz, Matthias Lermer, Leonardo Midolo, Martin Kamp, Sven Höfling, and Andrea Fiore  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21758-21765 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate tunable on-chip single photon sources using the Stark tuning of single quantum dot (QD) excitonic transitions in short photonic crystal waveguides (PhC WGs). The emission of single QDs can be tuned in real-time by 9 nm with an applied bias voltage less than 2V. Due to a reshaped density of optical modes in the PhC WG, a large coupling efficiency β65% to the waveguide mode is maintained across a wavelength range of 5 nm. When the QD is resonant with the Fabry-Perot mode of the PhC WG, a strong enhancement of spontaneous emission is observed leading to a maximum coupling efficiency β=88% . These results represent an important step towards the scalable integration of single photon sources in quantum photonic integrated circuits.

© 2012 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(270.0270) Quantum optics : Quantum optics
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: July 30, 2012
Revised Manuscript: August 29, 2012
Manuscript Accepted: August 29, 2012
Published: September 6, 2012

Thang B. Hoang, Johannes Beetz, Matthias Lermer, Leonardo Midolo, Martin Kamp, Sven Höfling, and Andrea Fiore, "Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths," Opt. Express 20, 21758-21765 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681. (1946).
  2. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett.95(18), 183901 (2005). [CrossRef] [PubMed]
  3. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell βfactor and factor in a photonic crystal waveguide,” Phys. Rev. B75(20), 205437 (2007).
  4. V. S. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett.99(19), 193901 (2007). [CrossRef] [PubMed]
  5. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β− factors in photonic-crystal waveguides,” Phys. Rev. Lett.99(2), 023902 (2007). [CrossRef] [PubMed]
  6. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101(11), 113903 (2008). [CrossRef] [PubMed]
  7. S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett.96(3), 031109 (2010). [CrossRef]
  8. H. Thyrrestrup, L. Sapienz, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide, ” Appl. Phys. Lett.96(23), 231106 (2010). [CrossRef]
  9. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011). [CrossRef]
  10. T. B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, and A. Fiore, “Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides,” Appl. Phys. Lett.100(6), 061122 (2012). [CrossRef]
  11. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frederick, M. Bichler, M. C. Amann, A. Holleitner, M. Kaniber, and J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X2(1), 011014 (2012). [CrossRef]
  12. P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B82(16), 165103 (2010). [CrossRef]
  13. R. B. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Two-photon interference of the emission from electrically tunable remote quantum dots,” Nat. Photonics4(9), 632–635 (2010). [CrossRef]
  14. E. B. Flagg, A. Muller, S. V. Polyakov, A. Ling, A. Migdall, and G. S. Solomon, “Interference of single photons from two separate semiconductor quantum dots,” Phys. Rev. Lett.104(13), 137401 (2010). [CrossRef] [PubMed]
  15. B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett.86(10), 101908 (2005). [CrossRef]
  16. A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, “Giant Stark effect in the emission of single semiconductor quantum dots,” Appl. Phys. Lett.97(3), 031104 (2010). [CrossRef]
  17. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005). [CrossRef]
  18. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B80(12), 125332 (2009). [CrossRef]
  19. C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Yu. B. Vakhtomin, K. V. Smirnov, and G. N. Gol’tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett.91(3), 031106 (2007). [CrossRef]
  20. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett.84(4), 733–736 (2000). [CrossRef] [PubMed]
  21. I. E. Itskevich, S. I. Rybchenko, I. I. Tartakovskii, S. T. Stoddart, A. Levin, P. C. Main, L. Eaves, M. Henini, and S. Parnell, “Stark shift in electroluminescence of individual InAs quantum dots,” Appl. Phys. Lett.76(26), 3932–3934 (2000). [CrossRef]
  22. P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett.85(14), 2791–2793 (2004). [CrossRef]
  23. T. M. Hsu, W.-H. Chang, C. C. Huang, N. T. Yeh, and J.-I. Chyi, “Quantum-confined Stark shift in electroreflectance of InAs/InxGa1−xAs self-assembled quantum dots,” Appl. Phys. Lett.78(12), 1760 (2001). [CrossRef]
  24. J. D. Mar, X. L. Xu, J. J. Baumberg, F. S. F. Brossard, A. C. Irvine, C. Stanley, and D. A. Williams, “Bias-controlled single-electron charging of a self-assembled quantum dot in a two-dimensional-electron-gas-based n-i-Schottky diode,” Phys. Rev. B83(7), 075306 (2011). [CrossRef]
  25. N. Chauvin, C. Zinoni, M. Francardi, A. Gerardino, L. Balet, B. Alloing, L. H. Li, and A. Fiore, “Controlling the charge environment of single quantum dots in a photonic-crystal cavity,” Phys. Rev. B80(24), 241306 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited