OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21766–21772

A mode-matching analysis of dielectric-filled resonant cavities coupled to terahertz parallel-plate waveguides

Victoria Astley, Kimberly S. Reichel, Jonathan Jones, Rajind Mendis, and Daniel M. Mittleman  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21766-21772 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.

© 2012 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

Original Manuscript: July 9, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: August 31, 2012
Published: September 7, 2012

Victoria Astley, Kimberly S. Reichel, Jonathan Jones, Rajind Mendis, and Daniel M. Mittleman, "A mode-matching analysis of dielectric-filled resonant cavities coupled to terahertz parallel-plate waveguides," Opt. Express 20, 21766-21772 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007). [CrossRef] [PubMed]
  2. T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range,” Appl. Phys. Lett.89(17), 173508 (2006). [CrossRef]
  3. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003). [CrossRef]
  4. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005). [CrossRef]
  5. B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18(18), 19353–19360 (2010). [CrossRef] [PubMed]
  6. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(theylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express2(1), 012301 (2009). [CrossRef]
  7. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91(18), 184102 (2007). [CrossRef]
  8. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  9. C. Rau, G. Torosyan, R. Beigang, and Kh. Nerkararyan, “Prism coupled terahertz waveguide sensor,” Appl. Phys. Lett.86(21), 211119 (2005). [CrossRef]
  10. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009). [CrossRef]
  11. V. Astley, K. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities,” Appl. Phys. Lett.100(23), 231108 (2012). [CrossRef]
  12. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009). [CrossRef] [PubMed]
  13. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011). [CrossRef] [PubMed]
  14. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett.90(9), 091105 (2007). [CrossRef]
  15. A. Bingham, “Propagation through terahertz waveguides with photonic crystal boundaries,” Ph.D. Thesis, Oklahoma State University: Stillwater (2007).
  16. P. P. Borsboom and H. J. Frankena, “Field analysis of two-dimensional integrated optical gratings,” J. Opt. Soc. Am. B12(5), 1134–1141 (1995). [CrossRef]
  17. T. Thumvongskul and T. Shiozawa, “Reflection characteristics of a metallic waveguide grating with rectangular grooves as a frequency-selective reflector,” Microw. Opt. Technol. Lett.32(6), 414–418 (2002). [CrossRef]
  18. T. Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, 1989).
  19. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009). [CrossRef]
  20. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  21. R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett.31(17), 2643–2645 (2006). [CrossRef] [PubMed]
  22. J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Terahertz Waves31(9), 1015–1021 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited