OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21792–21804

Hotspot-aware fast source and mask optimization

Jia Li, Yijiang Shen, and Edmund Y. Lam  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21792-21804 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Source mask optimization (SMO) is a useful technique for printing the integrated circuit (IC) on a wafer with increasingly smaller feature size. However, complex SMO algorithms generally lead to undesirably long runtime resulting from an optimization of largely identical regions over the whole mask pattern. In this work, a weighted SMO scheme incorporating both an awareness of the hotspots and robustness against process variations is proposed. We show how optimal solutions are reached with fewer iterations by applying various degrees of correction in the corresponding regions. The proposed method includes identifying the hotspots and combining a weight matrix to the cost function for adjustment and control. Simulation results are compared with the mask optimization (under a fixed source) and conventional SMO to illustrate the performance improvement in terms of pattern fidelity, convergence rate and process window size.

© 2012 OSA

OCIS Codes
(110.3960) Imaging systems : Microlithography
(110.5220) Imaging systems : Photolithography
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: July 17, 2012
Revised Manuscript: September 2, 2012
Manuscript Accepted: September 3, 2012
Published: September 7, 2012

Jia Li, Yijiang Shen, and Edmund Y. Lam, "Hotspot-aware fast source and mask optimization," Opt. Express 20, 21792-21804 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography, (SPIE, Washington, 2001). [CrossRef]
  2. S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express16, 14746–14760 (2008). [CrossRef] [PubMed]
  3. S. Sherif, B. Saleh, and R. De Leone, “Binary images synthesis using mixed linear integar programming,” IEEE Trans. Image Process.4, 1252–1257 (1995). [CrossRef] [PubMed]
  4. X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express15, 15066–15079 (2007). [CrossRef] [PubMed]
  5. Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express17, 23690–23701 (2009). [CrossRef]
  6. Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express19, 5511–5521 (2011). [CrossRef] [PubMed]
  7. T. H. Dam, X. Zhou, D. Chen, A. Adamov, D. Peng, and B. Gleason, “Validation and application of a mask model for inverse lithography,” in Design for Manufacturability through Design-Process Integration II, V. K. Sing and M. L. Rieger eds., Proc. SPIE 6925, 69251J (2008).
  8. Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds., Proc. SPIE 7640, 76401J (2010).
  9. D. Melville, A. Rosenbluth, K. Tian, K. Lai, S. Bagheri, J. Tirapu-Azpiroz, J. Meiring, S. Halle, G. McIntyre, T. Faure, D. Corliss, A. Krasnoperova, L. Zhuang, P. Strenski, A. Waechter, L. Ladanyi, F. Barahona, D. Scarpazza, J. Lee, T. Inoue, M. Sakamoto, H. Muta, A. Wagner, G. Burr, Y. Kim, E. Gallagher, M. Hibbs, A. Tritchkov, Y. Granik, M. Fakhry, K. Adam, G. Berger, M. Lam, A. Dave, and N. Cobb, “Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds., Proc. SPIE 7640, 764006 (2010).
  10. Y. Granik, “Source optimization for image fidelity and throughput,” J. Microlith. Microfab. Microsys.3, 509–522 (2004). [CrossRef]
  11. K. Iwase, P. D. Bisschop, B. Laenens, Z. Li, K. Gronlund, P. V. Adrichem, and S. Hsu, “A new source optimization approach for 2X node logic,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds., Proc. SPIE8166, 81662A (2011).
  12. H. Hu, Y. Zou, and Y. Deng, “Optimization on illumination source with design of experiments,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds., Proc. SPIE7640, 764027 (2010).
  13. T. Mülders, V. Domnenko, B. Küchler, T. Klimpel, H.-J. Stock, A. A. Poonawala, K. N. Taravade, and W. A. Stanton, “Simultaneous source-mask optimization: a numerical combining method,” in Photomask Technology 2010, M. W. Montgomery and W. Maurer, eds., Proc. SPIE7823, 78233X (2010).
  14. M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds., Proc. SPIE8166, 81663M (2011).
  15. T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds., Proc. SPIE 7640, 764006 (2010).
  16. Y. Deng, T. H. Coskun, J. Kye, and H. J. Levinson, “Lithography target optimization with source-mask optimization,” in Optical Microlithography XXV, W. Conley, ed., Proc. SPIE 8326, 83262P (2012).
  17. X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express17, 5783–5793 (2009). [CrossRef] [PubMed]
  18. J.-C. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” in Optical Microlithography XXIV, M. V. Dusa, ed., Proc. SPIE 7973, 797320 (2011).
  19. J.-C. Yu, P. Yu, and H. Y. Chao, “Fast source optimization involving quadratic line-contour objectives for the resist image,” Opt. Express20, 8161–8174 (2012). [CrossRef] [PubMed]
  20. E. Y. Lam and A. K. Wong, “Computation lithography: virtual reality and virtual virtuality,” Opt. Express17, 12259–12268 (2009). [CrossRef] [PubMed]
  21. S. K. Choy, N. Jia, C. S. Tong, M. L. Tang, and E. Y. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imaging Sciences5, 625–651 (2012). [CrossRef]
  22. A. K. Wong, Optical Imaging in Projection Microlithography, (SPIE, Washington, 2005). [CrossRef]
  23. N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express19, 19384–19398 (2011). [CrossRef] [PubMed]
  24. Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical oithography,” IEEE Trans. Image Process.20, 2856–2864 (2011). [CrossRef] [PubMed]
  25. A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process.16, 774–788 (2007). [CrossRef] [PubMed]
  26. J. Kim and M. Fan, “Hotspot detection on post-OPC layout using full chip simulation based verification tool : a case study with aerial image simulation,” in 23rd Annual BACUS Symposium on Photomask Technology, K. R. Kimmel and W. Staud, eds., Proc. SPIE 5256, 919–925 (2003).
  27. M. L. Kempsell, E. Hendrickx, A. Tritchkov, K. Sakajiri, K. Yasui, S. Yoshitake, Y. Granik, G. Vandenberghe, and B. W. Smith, “Inverse lithography for 45-nm-node contact holes at 1.35 numerical aperture,” J. Microlith. Microfab. Microsys.8, 043001 (2009). [CrossRef]
  28. J.-C. Yu and P. Yu, “Choosing objective functions for inverse lithography patterning,” in Optical Microlithography XXIV, M. V. Dusa, ed., Proc. SPIE7973, 79731N (2011).
  29. K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Manu, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process,” in Optical Microlithography XXIV, H. J. Levinson and M. V. Dusa eds., Proc. SPIE 7274, 72740A (2009).
  30. S. Hsu, Z. Li, L. Chen, K. Gronlund, H.-Y. Liu, and R. Socha, “Source-mask co-optimization: optimize design for imaging and impact of source complexity on lithography performance,” in Lithography Asia 2009, A. C. Chen, W.-S. Han, B. J. Lin, and A. Yen eds., Proc. SPIE 7520, 75200D (2009).
  31. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, New York, 2006).
  32. N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt.12, 045601 (2010). [CrossRef]
  33. T. H. Coskun, H. Dai, V. Kamat, C.-M. Hsu, G. Santoro, C. Ngai, M. Reybrouck, G. Grozev, and H.-T. Huang, “Free form source and mask optimization for negative tone resist development for 22nm node contact holes,” in Optical Microlithography XXV, W. Conley, ed., Proc. SPIE 8326, 83260V (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited