OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1060–1069

Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform

J. Lin, O. G. Rodríguez-Herrera, F. Kenny, D. Lara, and J. C. Dainty  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1060-1069 (2012)
http://dx.doi.org/10.1364/OE.20.001060


View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the volumetric field distribution in the focal region of a high numerical aperture focusing system can be efficiently calculated with a three-dimensional Fourier transform. In addition to focusing in a single medium, the method is able to calculate the more complex case of focusing through a planar interface between two media of mismatched refractive indices. The use of the chirp z-transform in our numerical implementation of the method allows us to perform fast calculations of the three-dimensional focused field distribution with good accuracy.

© 2012 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.0180) Imaging systems : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

History
Original Manuscript: August 23, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 11, 2011
Published: January 4, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
J. Lin, O. G. Rodríguez-Herrera, F. Kenny, D. Lara, and J. C. Dainty, "Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform," Opt. Express 20, 1060-1069 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Stamnes, Waves in Focal Regions (Hilger, 1986).
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  3. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  4. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  5. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express14(23), 11277–11291 (2006). [CrossRef] [PubMed]
  6. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing, 2nd ed. (Prentice Hall, 1999).
  7. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am.54(2), 240–244 (1964). [CrossRef]
  8. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image: erratum,” J. Opt. Soc. Am. A19(8), 1721–1721 (2002). [CrossRef]
  9. I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun.271(1), 40–47 (2007). [CrossRef]
  10. J. Lin, X.-C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodríguez-Herrera, and J. C. Dainty, “Direct calculation of a three-dimensional diffracted field,” Opt. Lett.36(8), 1341–1343 (2011). [CrossRef] [PubMed]
  11. P. Török, P. R. T. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A23(3), 713–722 (2006). [CrossRef] [PubMed]
  12. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express11(21), 2747–2752 (2003). [CrossRef] [PubMed]
  13. J. Lin, X.-C. Yuan, S. H. Tao, and R. E. Burge, “Variable-radius focused optical vortex with suppressed sidelobes,” Opt. Lett.31(11), 1600–1602 (2006). [CrossRef] [PubMed]
  14. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  15. C. J. R. Sheppard and M. Gu, “Axial imaging through an aberration layer of water in confocal microscopy,” Opt. Commun.88(2-3), 180–190 (1992). [CrossRef]
  16. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A12(2), 325–332 (1995). [CrossRef]
  17. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, “Comparison of different theories for focusing through a plane interface,” J. Opt. Soc. Am. A14(7), 1482–1490 (1997). [CrossRef]
  18. P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt.36(11), 2305–2312 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited